Skip to main content

Modeling and Monitoring of Multimodes Process

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

  • 2602 Accesses

Abstract

In the paper, a new monitoring approach is proposed for handling the dynamic problem in the industrial batch process. Compared to conventional method, the contributions are as follows:1) Multimodes are separated correctly since the cross-mode correlations are considered and the common information is extracted.2) a manifold learning approach(LLE) is implemented to extract the common information.3)after that two different subspaces are separated, the common and specific subspace models are built and analyzed respectively. The monitoring is carried out in subspace. The corresponding confidence regions are constructed according to their models respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ge, Z., Gao, F.R., Song, Z.H.: Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chemical Engineering Science 66, 5173–5183 (2011)

    Article  Google Scholar 

  2. Wang, X., Kruger, U., Lennox, B.: Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice 11, 613–632 (2003)

    Article  Google Scholar 

  3. Kruger, U., Dimitriadis, G.: Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 54, 2581–2596 (2008)

    Article  Google Scholar 

  4. Zhao, C.H., Mo, S.Y., Gao, F.R.: Statistical analysis and online monitoring for handling multiphase batch processes with varying durations. Journal of Process Control 21, 817–829 (2011)

    Article  Google Scholar 

  5. Zhang, Y.W., Qin, S.J.: Improved nonlinear fault detection technique and statistical analysis. AIChE J. 54, 3207–3220 (2008)

    Article  Google Scholar 

  6. AlGhazzawi, A., Lennox, B.: Monitoring a complex refining process using multivariate statistics. Control Engineering Practice 16, 294–307 (2008)

    Article  Google Scholar 

  7. Zhang, Y.W., Zhou, H., Qin, S.J., Chai, T.Y.: Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Transactions on Industrial Informatics 6, 3–12 (2010)

    Article  Google Scholar 

  8. Zhang, Y.W., Qin, S.J.: Nonlinear Fault Detection Technique and Statistical Analysis. AIChE J. 54, 3207–3220 (2008)

    Article  Google Scholar 

  9. Zhang, Y.W., Zhang, Y.: Fault detection of non-Gaussian processes based on modified independent component analysis. Chemical Engineering Science 65, 4630–4639 (2010)

    Article  Google Scholar 

  10. Zhang, Y.W., Teng, Y.D., Zhang, Y.: Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science 65, 2153–2158 (2010)

    Article  Google Scholar 

  11. Nomikos, P.: Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis. ISA Transaction 35, 259–266 (1996)

    Article  Google Scholar 

  12. He, N., Wang, S., Xie, L.: An improved adaptive multi-way principal component analysis for monitoring streptomycin fermentation process. Chinese Journal of Chemical Engineering 12, 96–101 (2004)

    Google Scholar 

  13. Gallagher, N.B., Wise, B.M.: Application of multi-way principal components analysis to nuclear waste storage tank monitoring. Computers and Chemical Engineering 20, S739–S744 (1996)

    Google Scholar 

  14. Lee, J., Yoo, C., Lee, L.: Online batch process monitoring using a consecutively updated multiway principal analysis model. Journal of Biotechnology 108, 61–77 (2004)

    Article  Google Scholar 

  15. Singhai, A., Seborg, D.E.: Evaluation of a pattern matching method for the Tennessee Eastman challenge process. J. Process Control 16, 601–613 (2007)

    Article  Google Scholar 

  16. Bakshi, B.R.: Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44, 1596–1610 (1998)

    Article  Google Scholar 

  17. Fu, J., He, H.B., Zhou, X.M.: Adaptive learning and control for MIMO system based on adaptive dynamic programming. IEEE Transactions on Neural Networks 22, 1133–1148 (2011)

    Article  Google Scholar 

  18. Wang, F.Y., Jin, N., Liu, D.R., Wei, Q.L.: Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with λ A -error bound. IEEE Transactions on Neural Networks 22, 24–36 (2011)

    Article  Google Scholar 

  19. Han, M., Fan, J.C., Wang, J.: “A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control. IEEE Transactions on Neural Networks 22, 1457–1468 (2011)

    Article  Google Scholar 

  20. Flury, B.K.: Two generalizations of the common principal component model. Biometrika 74(1), 59–69 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  22. Ham, J., Lee, D.D., Mika, S., Schokopf, B.: A kernel view of the dimensionality reduction of manifolds. In: Proc. Int. Conf. Mach. Learn., Banff, AB, Canada, pp. 369–376 (2004)

    Google Scholar 

  23. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems 15, pp. 721–728. MIT Press, Cambridge (2003)

    Google Scholar 

  24. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Compute. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  25. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Compute. 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proc. Int. Conf. Mach. Learn., Banff, AB, Canada, pp. 888–905 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Wang, C. (2012). Modeling and Monitoring of Multimodes Process. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics