Skip to main content

Selective Ensemble Modeling Parameters of Mill Load Based on Shell Vibration Signal

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

  • 2655 Accesses

Abstract

Load parameters inside the ball mill have direct relationships with the optimal operation of grinding process. This paper aims to develop a selective ensemble modeling approach to estimate these parameters. At first, the original vibration signal is decomposed into a number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) adaptively. Then, frequency spectra of these IMFs are obtained via fast Fourier transform (FFT), and a serial of kernel partial least squares (KPLS) sub-models are constructed based on these frequency spectra. At last, the ensemble models are obtained by integrating the branch and band (BB) algorithm and the information entropy-based weighting algorithm. Experimental results based on a laboratory scale ball mill indicate that the propose approach not only has better prediction accuracy, but also can interpret the vibration signal more deeply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhou, P., Chai, T.Y., Wang, H.: Intelligent Optimal-Setting Control for Grinding Circuits of Mineral Processing. IEEE Transactions on Automation Science and Engineering 6, 730–743 (2009)

    Article  Google Scholar 

  2. Zeng, Y., Forssberg, E.: Monitoring Grinding Parameters by Vibration Signal Measurement-a Primary Application. Minerals Engineering 7, 495–501 (1994)

    Article  Google Scholar 

  3. Gugel, K., Palcios, G., Ramirez, J., Parra, M.: Improving Ball Mill Control with Modern Tools Based on Digital Signal Processing (DSP) Technology. In: IEEE Cement Industry Technical Conference, pp. 311–318. IEEE Press, Dallas (2003)

    Google Scholar 

  4. Spencer, S.J., Campbell, J.J., Weller, K.R., Liu, Y.: Acoustic Emissions Monitoring of SAG Mill Performance. Intelligent Processing and Manufacturing of Materials 2, 936–946 (1999)

    Google Scholar 

  5. Tang, J., Zhao, L.J., Zhou, J.W., Yue, H., Chai, T.Y.: Experimental Analysis of Wet Mill Load Based on Vibration Signals of Laboratory-Scale Ball Mill Shell. Minerals Engineering 23, 720–730 (2010)

    Article  Google Scholar 

  6. Tang, J., Zhao, L., Yu, W., Yue, H., Chai, T.: Soft Sensor Modeling of Ball Mill Load via Principal Component Analysis and Support Vector Machines. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 803–810. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Liu, J.L.: On-line Soft Sensor for Polyethylene Process with Multiple Production Grades. Control Engineering Practice 15, 769–778 (2007)

    Article  Google Scholar 

  8. Huang, N.E., Shen, Z., Long, S.R.: The Empirical Mode Decomposition and the Hilbert Spectrum for Non-linear and Non Stationary Time Series Analysis. Proc. R. Soc. Lond. A. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. McInerny, S.A., Dai, Y.: Basic Vibration Signal Processing for Bearing Fault Detection. IEEE Transactions on Education 46, 149–156 (2003)

    Article  Google Scholar 

  10. Huang, P., Pan, Z.W., Qi, X.L., Lei, J.P.: Bearing Fault Diagnosis Based on EMD and PSD. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, pp. 1300–1304. IEEE Press, Ji Nan (2010)

    Google Scholar 

  11. Tang, J., Zhao, L.J., Yue, H., Yu, W., Chai, T.Y.: Vibration Analysis Based on Empirical Mode Decomposition and Partial Least Square. Procedia Engineering 16, 646–652 (2011)

    Article  Google Scholar 

  12. Zhou, Z.H., Wu, J., Tang, W.: Ensembling Neural Networks: Many Could be Better Than All. Artificial Intelligence 137, 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Narendra, P.M., Fukunaga, K.: A Branch and Bound Algorithm for Feature Subset Selection. IEEE Transactions on Computers C-26, 917–922 (1977)

    Article  Google Scholar 

  14. Wang, C.S., Wu, M., Cao, W.H., He, Y.: Intelligent Integrated Modeling and Synthetic Optimization for Blending Process in Lead-Zinc Sintering. Acta Automatica Sinica 35, 605–612 (2009)

    Google Scholar 

  15. Rosipal, R., Trejo, L.J.: Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 2, 97–123 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, J., Zhao, LJ., Long, J., Chai, Ty., Yu, W. (2012). Selective Ensemble Modeling Parameters of Mill Load Based on Shell Vibration Signal. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics