Abstract
We give Binary Decision Diagram (BDD) based methods for deciding validity and satisfiability of propositional Intuitionistic Logic Int and Bi-intuitionistic Tense Logic BiKt. We handle intuitionistic implication and bi-intuitionistic exclusion by treating them as modalities, but the move to an intuitionistic basis requires careful analysis for handling the reflexivity, transitivity and antisymmetry of the underlying Kripke relation. BiKt requires a further extension to handle the interactions between the intuitionistic and modal binary relations, and their converses. We explain our methodology for using the Kripke semantics of these logics to constrain the underlying least and greatest fixpoint approaches of the finite model construction. With some optimisations this technique is competitive with the state of the art theorem provers for Intuitionistic Logic using the ILTP benchmark and randomly generated formulae.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avellone, A., Fiorino, G., Moscato, U.: Optimization techniques for propositional intuitionistic logic and their implementation. Theoretical Computer Science 409(1), 41–58 (2008)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)
Buddy (2011), http://sourceforge.net/projects/buddy/
Buisman, L., Goré, R.: A Cut-Free Sequent Calculus for Bi-intuitionistic Logic. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 90–106. Springer, Heidelberg (2007)
Goré, R., Thomson, J., Widmann, F.: An experimental comparison of theorem provers for CTL. In: TIME 2011: Eighteenth International Symposium on Temporal Representation and Reasoning, pp. 49–56 (September 2011)
Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: AiML 2008, pp. 43–66 (2008)
Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for bi-intuitionistic tense logic. In: Advances in Modal Logic, pp. 156–177 (2010)
Goré, R., Widmann, F.: Sound Global State Caching for ALC with Inverse Roles. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidelberg (2009)
Marrero, W.: Using BDDs to Decide CTL. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 222–236. Springer, Heidelberg (2005)
McLaughlin, S., Pfenning, F.: The focused constraint inverse method for intuitionistic modal logics (2010), (unpublished manuscript) (accessed January 31, 2012)
McLaughlin, S., Pfenning, F.: Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)
Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K. Journal of Applied Non-classical Logics 49 (2005)
Pinto, L., Uustalu, T.: Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 295–309. Springer, Heidelberg (2009)
Postniece, L.: Deep Inference in Bi-intuitionistic Logic. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 320–334. Springer, Heidelberg (2009)
Postniece, L.: Proof Theory and Proof Search of Bi-Intuitionistic and Tense Logic. Ph.D. thesis, Australian National University (2011)
Raths, T., Otten, J.: The ILTP library (2007), http://www.cs.uni-potsdam.de/ti/iltp/ (accessed January 2012)
Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic, release v1.1. Journal of Automated Reasoning (2006)
Rauszer, C.: Applications of Kripke models to Heyting-Brouwer logic. Studia Logica 36, 61–71 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goré, R., Thomson, J. (2012). BDD-Based Automated Reasoning for Propositional Bi-Intuitionistic Tense Logics. In: Gramlich, B., Miller, D., Sattler, U. (eds) Automated Reasoning. IJCAR 2012. Lecture Notes in Computer Science(), vol 7364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31365-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-31365-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31364-6
Online ISBN: 978-3-642-31365-3
eBook Packages: Computer ScienceComputer Science (R0)