Abstract
Unification in Description Logics has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. For the Description Logic \(\mathcal{EL}\), which is used to define several large biomedical ontologies, unification is NP-complete. An NP unification algorithm for \(\mathcal{EL}\) based on a translation into propositional satisfiability (SAT) has recently been presented. In this paper, we extend this SAT encoding in two directions: on the one hand, we add general concept inclusion axioms, and on the other hand, we add role hierarchies (\(\mathcal{H}\)) and transitive roles (R + ). For the translation to be complete, however, the ontology needs to satisfy a certain cycle restriction. The SAT translation depends on a new rewriting-based characterization of subsumption w.r.t. \(\mathcal{ELH}_{{R}^+}\)-ontologies.
Supported by DFG under grant BA 1122/14-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic \(\mathcal{EL}\) w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Theoretical Computer Science, TU Dresden (2011), http://lat.inf.tu-dresden.de/research/reports.html
Baader, F., Borgwardt, S., Morawska, B.: Extending unification in \(\mathcal{EL}\) towards general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning. AAAI Press (2012) (short paper)
Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in \(\mathcal{ELH}_{{R}^{+}}\) w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, Theoretical Computer Science, TU Dresden (2012), http://lat.inf.tu-dresden.de/research/reports.html
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, pp. 364–369. Morgan Kaufmann, Los Altos (2005)
Baader, F., Morawska, B.: Unification in the Description Logic \(\mathcal{EL}\). In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)
Baader, F., Morawska, B.: SAT Encoding of Unification in \(\mathcal{EL}\). In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg (2010)
Baader, F., Morawska, B.: Unification in the description logic \(\mathcal{EL}\). Logical Methods in Computer Science 6(3) (2010)
Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic Computation 31(3), 277–305 (2001)
Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 445–532. The MIT Press (2001)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press (2009)
Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proc. of the 16th Eur. Conf. on Artificial Intelligence. pp. 298–302 (2004)
Campbell, J.R., Lopez Osornio, A., de Quiros, F., Luna, D., Reynoso, G.: Semantic interoperability and SNOMED CT: A case study in clinical problem lists. In: Kuhn, K., Warren, J., Leong, T.Y. (eds.) Proc. of the 12th World Congress on Health (Medical) Informatics, pp. 2401–2402. IOS Press (2007)
Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid E-unification. Theor. Comput. Sci. 166(1&2), 291–300 (1996)
Gallier, J.H., Narendran, P., Plaisted, D.A., Snyder, W.: Rigid E-unification: NP-completeness and applications to equational matings. Inf. Comput. 87(1/2), 129–195 (1990)
Seidenberg, J., Rector, A.L.: Representing Transitive Propagation in OWL. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 255–266. Springer, Heidelberg (2006)
Sofronie-Stokkermans, V.: Locality and subsumption testing in \(\mathcal{EL}\) and some of its extensions. In: Proc. Advances in Modal Logic (2008)
Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-Triplets in SNOMED CT Using Tractable Description Logic Operators. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baader, F., Borgwardt, S., Morawska, B. (2012). SAT Encoding of Unification in \(\mathcal{ELH}_{{R}^+}\) w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds) Automated Reasoning. IJCAR 2012. Lecture Notes in Computer Science(), vol 7364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31365-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-31365-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31364-6
Online ISBN: 978-3-642-31365-3
eBook Packages: Computer ScienceComputer Science (R0)