Skip to main content

SAT Encoding of Unification in \(\mathcal{ELH}_{{R}^+}\) w.r.t. Cycle-Restricted Ontologies

  • Conference paper
Automated Reasoning (IJCAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7364))

Included in the following conference series:

  • 1151 Accesses

Abstract

Unification in Description Logics has been proposed as an inference service that can, for example, be used to detect redundancies in ontologies. For the Description Logic \(\mathcal{EL}\), which is used to define several large biomedical ontologies, unification is NP-complete. An NP unification algorithm for \(\mathcal{EL}\) based on a translation into propositional satisfiability (SAT) has recently been presented. In this paper, we extend this SAT encoding in two directions: on the one hand, we add general concept inclusion axioms, and on the other hand, we add role hierarchies (\(\mathcal{H}\)) and transitive roles (R  + ). For the translation to be complete, however, the ontology needs to satisfy a certain cycle restriction. The SAT translation depends on a new rewriting-based characterization of subsumption w.r.t. \(\mathcal{ELH}_{{R}^+}\)-ontologies.

Supported by DFG under grant BA 1122/14-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic \(\mathcal{EL}\) w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Theoretical Computer Science, TU Dresden (2011), http://lat.inf.tu-dresden.de/research/reports.html

  2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in \(\mathcal{EL}\) towards general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning. AAAI Press (2012) (short paper)

    Google Scholar 

  3. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in \(\mathcal{ELH}_{{R}^{+}}\) w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, Theoretical Computer Science, TU Dresden (2012), http://lat.inf.tu-dresden.de/research/reports.html

  4. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, pp. 364–369. Morgan Kaufmann, Los Altos (2005)

    Google Scholar 

  5. Baader, F., Morawska, B.: Unification in the Description Logic \(\mathcal{EL}\). In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Baader, F., Morawska, B.: SAT Encoding of Unification in \(\mathcal{EL}\). In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Baader, F., Morawska, B.: Unification in the description logic \(\mathcal{EL}\). Logical Methods in Computer Science 6(3) (2010)

    Google Scholar 

  8. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic Computation 31(3), 277–305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 445–532. The MIT Press (2001)

    Google Scholar 

  10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press (2009)

    Google Scholar 

  11. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proc. of the 16th Eur. Conf. on Artificial Intelligence. pp. 298–302 (2004)

    Google Scholar 

  12. Campbell, J.R., Lopez Osornio, A., de Quiros, F., Luna, D., Reynoso, G.: Semantic interoperability and SNOMED CT: A case study in clinical problem lists. In: Kuhn, K., Warren, J., Leong, T.Y. (eds.) Proc. of the 12th World Congress on Health (Medical) Informatics, pp. 2401–2402. IOS Press (2007)

    Google Scholar 

  13. Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid E-unification. Theor. Comput. Sci. 166(1&2), 291–300 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallier, J.H., Narendran, P., Plaisted, D.A., Snyder, W.: Rigid E-unification: NP-completeness and applications to equational matings. Inf. Comput. 87(1/2), 129–195 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Seidenberg, J., Rector, A.L.: Representing Transitive Propagation in OWL. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 255–266. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Sofronie-Stokkermans, V.: Locality and subsumption testing in \(\mathcal{EL}\) and some of its extensions. In: Proc. Advances in Modal Logic (2008)

    Google Scholar 

  17. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-Triplets in SNOMED CT Using Tractable Description Logic Operators. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baader, F., Borgwardt, S., Morawska, B. (2012). SAT Encoding of Unification in \(\mathcal{ELH}_{{R}^+}\) w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds) Automated Reasoning. IJCAR 2012. Lecture Notes in Computer Science(), vol 7364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31365-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31365-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31364-6

  • Online ISBN: 978-3-642-31365-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics