Skip to main content

The Effect of the Stiffness Gradient on the Just Noticeable Difference between Surface Regions

  • Conference paper
Haptics: Perception, Devices, Mobility, and Communication (EuroHaptics 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7282))

  • 3501 Accesses

Abstract

Numerous studies have considered the ability of humans to perceive differences in forces and how this affects our ability to interpret the properties of materials. Previous research has not considered the effect of the rate of change of the material stiffness in our ability to perceive differences, however, an important factor in exploration processes such as a doctor’s palpation of the skin to examine tissues beneath. These effects are the topic of this research which attempts to quantify the effects of stiffness gradient magnitude and form on the discernment of changes in stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adelson, E.H.: Lightness Perception and Lightness Illusions. In: The New Cognitive Neurosciences, 2nd edn., pp. 339–351. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Cholewiak, S.A., Tan, H.Z., Ebert, D.S.: Haptic Identification of Stiffness and Force Magnitude. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 87–91. IEEE Press (2008)

    Google Scholar 

  3. Freyberger, F.K., Frber, B.: Compliance discrimination of deformable objects by squeezing with one and two fingers. In: Eurohaptics, pp. 271–276 (2006)

    Google Scholar 

  4. Isenberg, B.C., Dimilla, P.A., Walker, M., Kim, S., Wong, J.Y.: Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength. Biophysical Journal 97, 1313–1322 (2009)

    Article  Google Scholar 

  5. Koçak, U., Palmerius, K.L., Forsell, C., Ynnerman, A., Cooper, M.: Analysis of the JND of Stiffness in Three Modes of Comparison. In: Cooper, E.W., Kryssanov, V.V., Ogawa, H., Brewster, S. (eds.) HAID 2011. LNCS, vol. 6851, pp. 22–31. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Lamotte, R.H.: Softness discrimination with a tool. J. Neurophysiology 83(4), 1777–1786 (2000)

    Google Scholar 

  7. Lederman, S., Klatzky, R.: Haptic perception: A tutorial. Attention, Perception, and Psychophysics 71(7), 1439–1459 (2009)

    Article  Google Scholar 

  8. Levitt, H.: Transformed up-down methods in psychoacoustics. J. Acoustical Society of America 49, 467–477 (1971)

    Article  Google Scholar 

  9. Roland, P., Ladegaard-Pedersen, H.: A quantitative analysis of sensations of tension and of kinasthesia in man: Evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100(4), 671–692 (1977)

    Article  Google Scholar 

  10. Srinivasan, M.A., Beauregard, G., Brock, D.: The impact of visual information on the haptic perception of stiffness in virtual environments. In: ASME Dynamic Systems and Control Division, pp. 555–559 (1996)

    Google Scholar 

  11. Srinivasan, M.A., Lamotte, R.H.: Tactual discrimination of softness. J. Neurophysiology 73(1), 88–101 (1995)

    Google Scholar 

  12. Tan, H.Z., Pang, X.D., Durlach, N.I.: Manual resolution of length, force and compliance. In: ASME Dynamic Systems and Control Division, pp. 13–18 (1992)

    Google Scholar 

  13. Tan, H.Z., Durlach, N.I., Beauregard, G., Srinivasan, M.A.: Manual discrimination of compliance using active pinch grasp: The roles of force and work cues. Perception and Psychophysics 57(4), 495–510 (1995)

    Article  Google Scholar 

  14. Tiest, W.M.B., Kappers, A.M.: Cues for haptic perception of compliance. IEEE Transactions on Haptics 2(4), 189–199 (2009)

    Article  Google Scholar 

  15. Tse, J.R., Engler, A.J.: Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE 6(1), e15978 (2011)

    Google Scholar 

  16. Wong, J.Y., Velasco, A., Rajagopalan, P., Pham, Q.: Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels. Langmuir 19(5), 1908–1913 (2003)

    Article  Google Scholar 

  17. Wu, W.C., Basdogan, C., Srinivasan, M.A.: Visual, haptic, and biomodal perception of size and stiffness in virtual environments. In: ASME Dynamic Systems and Control Division, pp. 19–26 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koçak, U., Lundin Palmerius, K., Forsell, C., Cooper, M. (2012). The Effect of the Stiffness Gradient on the Just Noticeable Difference between Surface Regions. In: Isokoski, P., Springare, J. (eds) Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Computer Science, vol 7282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31401-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31401-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31400-1

  • Online ISBN: 978-3-642-31401-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics