Abstract
In this paper, we study several algorithms for batch verification of ECDSA signatures. The first of these algorithms is based upon the naive idea of taking square roots in the underlying field. We also propose two new and efficient algorithms which replace square-root computations by symbolic manipulations. Experiments carried out on NIST prime curves demonstrate a maximum speedup of above six over individual verification if all the signatures in the batch belong to the same signer, and a maximum speedup of about two if the signatures in the batch belong to different signers, both achieved by a fast variant of our second symbolic-manipulation algorithm. In terms of security, all the studied algorithms are equivalent to standard ECDSA* batch verification. These algorithms are practical only for small (≤ 8) batch sizes. To the best of our knowledge, this is the first reported study on the batch verification of original ECDSA signatures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)
ANSI, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62, approved January 7 (1999)
Cheon, J.H., Yi, J.H.: Fast Batch Verification of Multiple Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)
Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Letters 34(12), 1219–1220 (1998)
Hwang, M.-S., Lin, I.-C., Hwang, K.-F.: Cryptanalysis of the Batch Verifying Multiple RSA Digital Signatures. Informatica 11(1), 15–19 (2000)
Johnson, D., Menezes, A.: The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal on Information Security 1, 36–63 (2001)
Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be Improved: Complexity Trade-Offs with the Digital Signature Standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)
NIST, Digital Signature Standard (DSS) (2006), http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3%20_March2006.pdf
NIST, Recommended elliptic curves for federal government use (July 1999), http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
NIST, Secure Hash Standard (SHS) (2007), http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
PARI Group, PARI/GP Development Headquarters (2003-2008), http://pari.math.u-bordeaux.fr/
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and pubic-key cryptosystem. Communications of the ACM 2, 120–126 (1978)
Shanks, D.: Five number theoretic algorithms. In: Proceedings of the Second Manitoba Conference on Numerical Mathematics, pp. 51–70 (1973)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A. (2012). Batch Verification of ECDSA Signatures. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-31410-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31409-4
Online ISBN: 978-3-642-31410-0
eBook Packages: Computer ScienceComputer Science (R0)