
Compact Implementation and Performance
Evaluation of Block Ciphers in ATtiny Devices

Thomas Eisenbarth1, Zheng Gong2, Tim Güneysu3, Stefan Heyse3,
Sebastiaan Indesteege4,5, Stéphanie Kerckhof6, François Koeune6,

Tomislav Nad7, Thomas Plos7, Francesco Regazzoni6,8,
François-Xavier Standaert6, Loic van Oldeneel tot Oldenzeel6.

1 Department of Mathematical Sciences, Florida Atlantic University, FL, USA.
2 School of Computer Science, South China Normal University.

3 Horst Görtz Institute for IT Security, Ruhr-Universität, Bochum, Germany.
4 Department of Electrical Engineering ESAT/COSIC, KULeuven, Belgium.

5 Interdisciplinary Institute for BroadBand Technology (IBBT), Ghent, Belgium.
6 UCL Crypto Group, Université catholique de Louvain, Belgium.

7 Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology, Austria.

8 ALaRI Institute, University of Lugano, Switzerland.

Abstract. The design of lightweight block ciphers has been a very ac-
tive research topic over the last years. However, the lack of comparative
source codes generally makes it hard to evaluate the extent to which
implementations of different ciphers actually reach their low-cost goals
on various platforms. This paper reports on an initiative aiming to relax
this issue. First, we provide implementations of 12 block ciphers on an
ATMEL AVR ATtiny45 8-bit microcontroller, and make the correspond-
ing source code available on a web page. All implementations are made
public under an open-source license. Common interfaces and design goals
are followed by all designers to achieve comparable implementation re-
sults. Second, we evaluate performance figures of our implementations
with respect to different metrics, including energy-consumption mea-
surements and show our improvements compared to existing implemen-
tations.

Keywords: Lightweight, Block Cipher, AVR ATtiny, Implementation, Open Source.

1 Introduction

Small embedded devices including smart cards, RFIDs, and sensor nodes are
deployed in many applications today. They are usually characterized by strong
cost constraints. Yet, as they increasingly manipulate sensitive data, they re-
quire cryptographic protection. As a result, many lightweight ciphers have been
proposed in order to allow strong security guarantees at a lower cost than stan-
dard solutions. Quite naturally, the very idea of “low-cost” is highly dependent
on the target technology. Some operations that are extremely low-cost in hard-
ware (e.g., wire crossings) turn out to be annoyingly expensive in software. Even



within a class of similar targets, the presence or absence of some options such
as hardware multipliers may cause strong variations in the performance analysis
of different algorithms. As a result, it is difficult to have a good understanding
of which algorithms are actually lightweight on which device. Also, the lack of
comparative studies prevents a good understanding of the cost vs. performance
trade-off for these algorithms.

In this paper, we provide performance evaluations for low-cost block ciphers,
and investigate their implementation on an ATMEL AVR ATtiny45 device [2],
i.e. a small 8-bit microcontroller with limited memory and limited instruction
set. Despite the relatively frequent use of such devices in different applications,
little work has been done in benchmarking cryptographic algorithms in this con-
text. Notable exceptions include B. Poettering’s open-source codes for AES [18],
the XBX frameworks [20] and an interesting survey of lightweight cryptogra-
phy implementations [9]. Unfortunately, these references are still limited by the
number of ciphers under investigation and the fact that in some cases the source
code is not available for evaluation.

The goal of our work is to extend the benchmarking of 12 lightweight and
standard block ciphers, namely AES, DESXL, HIGHT, IDEA, KASUMI, KAT-
AN, KLEIN, mCrypton, NOEKEON, PRESENT, SEA, TEA, and to make their
implementation available under an open-source license. To the best of our knowl-
edge, four of these algorithms (KASUMI, KLEIN, mCrypton, KATAN) are im-
plemented for the first time on an 8-bit platform. We selected the ciphers ac-
cording to three criteria: all selected candidates should (a) give no indication of
flawed security, (b) be freely usable without patent restrictions, and (c) likely
result in lightweight implementations with a footprint of less than 256 bytes of
RAM and 4 KB of code size for a combined encryption and decryption function.

In order to make comparisons as meaningful as possible, we adapt the guide-
lines for evaluations of hardware implementations proposed in [10] to our soft-
ware context. Yet, as the project involves 12 different designers, we also ac-
knowledge that some biases can appear due to slightly different implementation
choices. Hence, as usual for performance evaluations, looking at the source codes
is essential in order to properly understand the reasons of different performance
figures. Overall, we hope that this initiative can be used as a first step in better
analyzing the performances of block ciphers in a specific but meaningful class
of devices. We also hope that it can be used as a starting point to further de-
velop cryptographic libraries for embedded platforms and, in the long run, add
security against physical attacks (e.g., based on faults or side-channel leakage)
as another evaluation criteria.

The remainder of this paper is structured as follows. Section 2 contains a
brief overview of the implemented ciphers. Section 3 establishes our evaluation
methodology and metrics, followed by Section 4 that gives details about the AT-
tiny45 microcontroller. Section 5 provides succinct descriptions and motivation
of the implementation choices made by the designers. Finally, performance eval-



uations are given in Section 6 and conclusions are drawn in Section 7. The web
page containing all our open-source codes is available at [8].

2 Investigated Ciphers

AES [6] is the new encryption standard selected in 2002 replacing the former
DES. It supports key sizes of 128, 192 or 256 bits, and its block size is 128
bits. The encryption iterates a round function a number of times, depending
on the key size. The round is composed of four transformations: SubBytes (that
applies a non-linear S-box to the bytes of the states), ShiftRows (a wire crossing),
MixColumns (a linear diffusion layer), and finally AddRoundKey (a bitwise XOR
of the round key). The round keys are generated from the secret key by means
of an expansion routine that re-uses the S-box used in SubBytes. For low-cost
applications, the typical choice is to fix the key size to 128 bits.

DESL, DESX, and DESXL [14] are lightweight variants of the DES cipher
with the main goal to minimize the gate count required in hardware implemen-
tations. In the L-variant, all eight DES S-boxes are replaced by a single S-Box
with well chosen characteristics to resist known attacks against DES. Addition-
ally, the initial permutation (IP ) and its inverse (IP−1) are omitted, because
they do not provide additional cryptographic strength. The X-variant includes
an additional key whitening of the form: DESXk,k1,k2(x) = k2 ⊕ DESk(k1 ⊕ x).
DESXL is the combination of both variants.

HIGHT [12] is a hardware-oriented block cipher designed for low-cost and low-
power applications. It uses 64-bit blocks and 128-bit keys. HIGHT is a variant
of the generalized Feistel network and is composed of simple operations: XOR,
additions mod 28 and bitwise rotations. Its key schedule consists of two algo-
rithms: one generating whitening key bytes for initial and final transformations;
the other one generating subkeys for the 32 rounds. Each subkey byte is the re-
sult of an addition mod 28 between a master key byte and a constant generated
using a linear feedback shift register.

IDEA [13] is a patented cipher whose patent expired in May 2011 (in all coun-
tries with a 20 year term of patent filing). Its underlying Lai-Massey construction
does not involve an S-box or a permutation network such as in other Feistel or
common SPN ciphers. Instead, it interleaves mathematical operations from three
different groups to establish security, such as addition modulo 216, multiplication
modulo 216 + 1 and addition in GF(216) (XOR). IDEA has a 128-bit key and
64-bit input and output. A major drawback of its construction is the inverse
key schedule that requires the complex extended Euclidean algorithm during
decryption. For efficient implementation, this complex key schedule needs to be
precomputed and stored in memory.

KASUMI [1] is a block cipher derived from MISTY1 [17]. It is used as a
keystream generator in UMTS, GSM, and GPRS mobile communication systems.
KASUMI has a 128-bit key and 64-bit input and output. The core of KASUMI is



an eight-round Feistel network. The round functions in the main Feistel network
are irreversible Feistel-like network transformations. The key scheduling is done
by bitwise rotating the 16-bit subkeys or XORing them with a constant. There
are two S-boxes, one with 7 bit, the other with 9 bit input/output.

KATAN and KTANTAN [4] are two families of hardware-oriented block
ciphers. They have 80-bit keys and a block size of either 32, 48 or 64 bits. The
cipher structure resembles that of a stream cipher, consisting of shift registers
and non-linear feedback functions. An LFSR counter is used to protect against
slide attacks. The difference between KATAN and KTANTAN lies in the key
schedule. KTANTAN is intended to be used with a single key per device, which
can then be burnt into the device. This allows KTANTAN to achieve a smaller
footprint in a hardware implementation. In our implementation, we consider
KATAN with 64-bit block size.

KLEIN [11] is a family of lightweight software-oriented block ciphers with
64-bit plaintexts and variable key length (64, 80 or 96 bits - our performance
evaluations focus on the 80-bit version). It is primarily designed for software im-
plementations in resource-constrained devices such as wireless sensors and RFID
tags, but its hardware implementation can be compact as well. The structure
of KLEIN is a typical Substitution-Permutation Network (SPN) with 12/16/20
rounds for KLEIN-64/80/96, respectively. One round transformation consists of
four operations AddRoundKey, SubNibbles (4-bit involutive S-box), RotateNibbles
and MixNibbles (borrowed from AES MixColumns). The key schedule of KLEIN
has a Feistel-like structure. It is agile even if keys are frequently changed and it
is designed to avoid potential related-key attacks.

mCrypton [15] is a block cipher designed for resource-constrained devices such
as RFID tags and sensors. It has a block length of 64 bits and a variable key
length of 64, 96 or 128 bits. Here, we implement the variant with 96-bit key
length. mCrypton consists of an AES-like round transformation (12 rounds) and
a key schedule. The round transformation operates on a 4×4 nibble (4-bit) array
and consists of a nibble-wise non-linear substitution, a column-wise bit permu-
tation, a transposition and a key-addition step. The substitution step uses four
4-bit S-boxes. Encryption and decryption have almost the same form. The key
scheduling algorithm generates round keys using non-linear S-box transforma-
tions, word-wise rotations, bit-wise rotations and a round constant. The same
S-boxes are used for the round transformation and key scheduling.

NOEKEON [5] is a block cipher with a key length and a block size of 128
bits. The block cipher consists of a simple round function based only on bit-wise
Boolean operations and cyclic shifts. The round function is iterated 16 times for
both encryption and decryption. Within each round, a working key is XORed
with the data. The working key is fixed during all rounds and is either the cipher
key itself (direct mode) or the cipher key encrypted with a null string. The self-
inverse structure of NOEKEON allows to efficiently combine the implementation
of encryption and decryption operation with only little overhead.



PRESENT [3] is a hardware-oriented lightweight block cipher designed to
meet tight area and power restrictions. It features a 64-bit block size and 80-bit
or 128-bit key size (we focus on the 80-bit variant). PRESENT implements a
substitution-permutation network and iterates 31 rounds. The permutation layer
consists only of bit permutations (i.e. wire crossings). Together with the tiny 4-
bit S-box, the design enables minimalistic hardware implementations. The key
scheduling consists of a single S-box lookup, a counter addition and a rotation.

SEA [19] is a scalable family of encryption algorithms, defined for low-cost
embedded devices, with variable bus sizes and block/key lengths. In this paper,
we focus on SEA96,8, i.e. a version of the cipher with 96-bit block and key size.
SEA is a Feistel cipher that exploits rounds with 3-bit S-boxes, a diffusion layer
made of bit and word rotations and a mod 2n key addition. Its key scheduling
is based on rounds similar to the encryption ones and is designed such that keys
can be derived “on-the-fly” both in encryption and decryption.

TEA [21] is a 64-bit block cipher using 128-bit keys (although equivalent keys
effectively reduce the key space to 2126). TEA stands for Tiny Encryption Algo-
rithm and, as the name says, this algorithm was built with simplicity and ease of
implementation in mind. An implementation of the algorithm in C corresponds
to about 20 lines of code, and does not involve a S-box. TEA has a 64-round
Feistel structure, each round being based on XOR, 32-bit addition and rotation.
The key schedule is also very simple, alternating the two halves of the key at
each round. TEA is sensitive to related-key attacks using 223 chosen plaintexts
and one related-key query, with a time complexity of 232.

3 Methodology and Metrics

In order to be able to compare the performances of the different ciphers in terms
of speed, memory space and energy, the developers were asked to respect a list
of common constraints, detailed hereunder.

1. The code has to be written in assembly, in a single file. It has to be com-
mented and easily readable, e.g., naming functions similar to their original
specifications.

2. The cipher has to be implemented in a low-cost way, minimizing the code
size and the use of data memory.

3. Both encryption and decryption routines have to be implemented.
4. Whenever possible, and in order to minimize the data-memory use, the key

schedule has to be computed “on-the-fly”. The computation of the key sched-
ule is always included in the algorithm evaluations.

5. The encryption process should start with plaintext and key in data memory.
The ciphertext should overwrite the plaintext at the end of this process (and
vice versa for decryption).

6. The target device is the 8-bit microcontroller ATtiny45 from ATMEL’s AVR
device family. It has a reduced instruction set and does not provide a hard-
ware multiplier.



7. The encryption and decryption routines have to be called by a common
interface.

The SEA reference code was sent as an example to all designers, together with
the common interface (also provided at [8]).

The basic metrics considered for evaluation are code size, RAM size, cycle
count in en- and decryption, and energy consumption. From these basic met-
rics, a combined metric is extracted (see Section 6). For the energy-consumption
evaluations, each cipher is programmed and executed on an ATtiny45 mounted
on a power-measurement board. A 22 Ohm shunt resistor is inserted between the
Vdd pin and the 5 V power supply, in order to measure the current consumed by
the controller while encrypting. The common interface generates a trigger at the
beginning and end of each encryption. The power traces are measured between
those two triggers using an oscilloscope that is equipped with a differential probe.
We average one hundred encryption traces for each energy evaluation using ran-
domly generated plaintexts and keys for each encryption. The average energy
consumed by an encryption is deduced by integrating the measured current.

Finally note that, as mentioned in the introduction, the 12 ciphers are im-
plemented by 12 different designers, with slightly different interpretations of
low-cost optimizations. As a result, some of the guidelines could not always
be followed, because of the cipher specifications making them less relevant. In
particular, the following exceptions deserve to be mentioned.

(1) The key scheduling of IDEA is not computed “on-the-fly” but precomputed
(as explained in Section 2).

(2) The key in KATAN has to be restored externally for subsequent invocations.
(3) The 4-bit S-boxes of KLEIN, mCrypton, and PRESENT are implemented

as 8-bit tables (because of a better time/memory trade-off).

4 Description of the ATtiny45 Microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. It
uses a Harvard architecture with separate instruction and data memory. Instruc-
tions are stored in a 4 kB Flash memory (2048× 16 bits). Data memory involves
256-byte of static RAM, a register file with 32 8-bit general-purpose registers,
and special I/O memory for peripherals like timer, analog-to-digital converter
or serial interface. Different direct and indirect addressing methods are available
to access data in RAM. Especially indirect addressing allows accessing data in
RAM with very compact code size. Moreover, the ATtiny45 features a 256-bytes
EEPROM memory for non-volatile data storage.

The instruction set of the ATtiny45 consists of 120 instructions which are typ-
ically 16-bit wide. Instructions can be divided into arithmetic logic unit (ALU)
operations (arithmetic, logical, and bit operations) and conditional and uncon-
ditional jump and call operations. The instructions are processed within a two-
stage pipeline with a pre-fetch and an execute phase. Most instructions are



executed within a single clock cycle, leading to a good instructions-per-cycle
ratio. Compared to other microcontrollers from ATMEL’s AVR series such as
the ATmega or ATxmega devices, the ATtiny45 has a reduced instruction set
(e.g., no multiply instruction), smaller memories (Flash, RAM, EEPROM), no
in-system debug capabilities, and less peripherals. On the bright side, the AT-
tiny45 consumes less power and is cheaper in price.

5 Implementation Details

AES. The code is written following the specification for 128-bit key/block size
and operates on a state matrix of 16 bytes. In order to improve performance,
the state is stored in 16 registers, while the key is stored in RAM. In addition,
five temporary registers are used to implement the MixColumn step. The S-box
and the round constants are implemented as look-up tables. The multiplication
operation needed for MixColumn is computed using shift and XOR instructions.

DESXL. In order to keep code size small, a function which can compute all
permutations and expansions depending on the calling parameters is used. This
function is also capable of generating 6-bit outputs for direct usage as S-box
input. Because of the bit-oriented structure of the permutations which are slow
in software, this function is the performance bottleneck of the implementation.
The rest of the code is a straightforward application of the specification. Besides
the memory requirements for plain-/ciphertext and the keys k, k1, k2, additional
16 bytes of RAM are required for the round key and the state. The S-box and all
permutation and expansion tables are stored in Flash memory and are processed
directly from there.

HIGHT. First, the intermediate states are stored in RAM at each round and
two bytes of the plaintext and one byte of the key are loaded at a time. This way,
it is possible to re-use the same code fragment four times per round. Next, the
byte rotation at the output of the round function is integrated in the memory
accesses of the surrounding functions, thus minimizing temporary storage and
gaining cycles. Eight subkey bytes are generated once every two rounds and are
stored in RAM. Finally, except for the additions mod 28 that are replaced by
subtractions mod 28 and some other minor changes, the same functions as in
encryption are used in decryption.

IDEA. This cipher is implemented including a precomputed key schedule per-
formed by separate functions for encryption and decryption, prior to the actual
cipher operation. During cipher execution the precomputed key (104 bytes) is
then read byte by byte from RAM. The plaintext/ciphertext and the internal
state are kept completely in 16 registers and 9 additional registers are used for
temporary computations and counters. IDEA requires a 16-bit modular mul-
tiplication as basic operation. However, in the AVR device used in this work,
no dedicated hardware multiplier unit is available. Multiplication is therefore
implemented in software resulting in a data-dependent execution time of the
cipher operation and an increased cycle count (about a factor of 4) compared to



an implementation for a device with a hardware multiplier. Note that IDEA’s
multiplication is special and maps zero as any input to 216 (which is equivalent
to −1 mod 216 + 1). Therefore, whenever a zero is detected as input to the mul-
tiplication, our implementations returns the additive inverse of the other input,
reduced modulo 216 + 1.

KASUMI. The code is written following the functions described in the cipher
specifications. During the execution, the 16-byte key as well as the 8-byte running
state remain stored in RAM. This allows using only 12 registers and 24 bytes of
RAM. Some rearrangements are done to skip unnecessary moves between regis-
ters. The 9-bit S-box is implemented as 8-bit table, with the MSBs concatenated
in a second 8-bit table. The 7-bit S-box is implemented as 8-bit table, leaving the
MSBs unused in this table. The round keys are derived “on-the-fly”. Decryption
is very similar to encryption, as usual for a Feistel structure.

KATAN-641. The main optimization goal is to limit the code size. The en-
tire state of the cipher is kept in registers during operation. To avoid excessive
register pressure, the in- and outputs are stored in RAM, and this RAM space
is used to backup the register contents during operation. Only three additional
registers need to be stored on the stack. The fact that three rounds of KATAN
can be run in parallel is not used in this implementation. Doing so would re-
quire more complicated shifting and masking to extract bits from the state, and
thus significantly increase the code size, for little or no performance gain. As the
KATAN key schedule is computed “on-the-fly”, the key in RAM is clobbered and
needs to be restored externally for subsequent invocations. Keeping the master
key in RAM would require 10 additional words (note that the KTANTAN key
schedule does not modify the key, so it does not have this limitation). In order
to implement the non-linear functions efficiently, addition instructions are used
to compute several logical AND’s and XOR’s in parallel through carefully posi-
tioning the input bits and using masking to avoid undesired carry propagation.

KLEIN-80. Despite the goal of small memory footprint, the 4-bit involutive S-
box is stored as an 8-bit table for saving clock cycles. As it can be used in both
encryption and decryption, this corresponds to a natural trade-off between code
size and processing speed (a similar choice is made for mCrypton and PRESENT,
see the next paragraphs). In order to save memory usage during processing, the
MixNibbles step (borrowed from AES MixColumns) is implemented by a single
function without using lookup tables. Overall, 29 registers are used during the
computations. Among them, 8 registers correspond to the intermediate state, 10
registers to the key scheduling, 9 registers are used for temporary storage and 2
registers for the round counter.

mCrypton. The reference code directly follows the cipher specification. The
implementation aims for a limited code size. Therefore, as much code as possi-
ble is reused for decryption and encryption. In addition, up to 20 registers are

1 All six variants of the KATAN/KTANTAN family are supported via conditional
assembly. Our performance evaluations focus on the 64-bit version of KATAN.



used during the computations to reduce the cycle count. 12 registers are used to
compute the intermediate state and the key scheduling, 6 registers for tempo-
rary storage, one for the current key scheduling constant and one for the round
counter. After each round the modified state and key scheduling state are stored
in RAM. The round key is derived from the key scheduling state and is tem-
porarily stored in RAM. The four 4-bit S-boxes are stored in four 8-bit tables,
wasting the 4 most significant bits of each entry, but saving cycle counts. The
constants used in the key scheduling algorithm are stored in an 8-bit table.

NOEKEON. The implementation aims to minimize the code size and the num-
ber of utilized registers. During execution of the block cipher, input data and
cipher key are stored in the RAM (32 bytes are required). In that way, only 4
registers are used for the running state, one register for the round counter, and
three registers for temporary computations. The X-register is used for indirect
addressing of the data in the RAM. Similar to the implementation of SEA (de-
tailed below), using more registers for the running state will decrease the cycle
count, but will also increase the code size because of a less generic program-
ming. For decrypting data, the execution sequence of the computation functions
is changed, which leads to a very small increase in code size.

PRESENT. The implementation is optimized in order to limit the code size
with throughput as secondary criteria. State and round key are stored in the
registers to minimize accesses to RAM. The S-boxes are stored as two 256-byte
tables, one for encryption and one for decryption. This allows for two S-box
lookups in parallel. However, code size can easily be reduced if only encryption
or decryption is performed. A single 16-byte table for the S-boxes could halve
the overall code size, but would significantly impact encryption times. The code
for permutation, which is the true performance bottleneck, can be used for both
encryption and decryption.

SEA. The reference code is written directly following the cipher specifications.
During its execution, plaintexts and keys are stored in RAM (accounting for a
total of 24 bytes), limiting the register consumption to 6 registers for the running
state, one register for the round counter and three registers of temporary storage.
Note that higher register consumption would allow decreasing the cycle count
at the cost of a less generic programming. The S-box is implemented using its
bitsliced representation. Decryption uses exactly the same code as encryption,
with “on-the-fly” key derivation in both cases.

TEA. Implementing TEA is almost straightforward due to the simplicity of the
algorithm. The implementation is optimized to limit the RAM usage and code
size. As far as RAM is concerned, we only use 24 bytes needed for plaintext
and key storage, with the ciphertext overwriting the plaintext in RAM at the
end of the process. The only notable issue regarding implementing TEA con-
cerns rotations. TEA is optimized for a 32-bit architecture and the fact that
only 1-position shift and rotations are available on the ATtiny, plus the need to
propagate carries, make these operations slightly more complex. In particular,
5-position shifts are optimized by replacing them by a 3-position shift in the



opposite direction and recovering boundary carries. Nonetheless, TEA proves to
be very easy to implement, resulting in a compact code of 648 bytes.

6 Performance Evaluation

We consider 6 different metrics: code size (in bytes), RAM use (in bytes), cycle
count in encryption and decryption, energy consumption (in µJ) and a combined
metric, namely the code size × cycle count product, normalized by the block
size. The results for our different implementations are given in Table 1 which
are compared in Figures 1, 2, 3, 4, 5, 6 as shown in the appendix. We detail a
few meaningful observations below.

Table 1: Performance evaluation of our implementations on the AVR ATtiny45
microcontroller. Results obtained in this work are given in bold face.

Cipher Block Key Size Code Size RAM Cycles Cycles Energy
Size [bits] [bits] [bytes] [bytes] (enc+key) (dec+key) [µJ]

AES 128 128 1659 33 4557 7015 19,2
AES[9] 128 128 2606 0 6637 7429 -
DESXL 64 184 820 48 84602 84602 348,9
DESXL[9] 64 184 3192 0 8531 7961 -
HIGHT 64 128 402 32 19503 20159 79,8
HIGHT[9] 64 128 5672 0 2964 2964 -
IDEA 64 128 836 232 ∼8250 ∼22729 34,3
IDEA[9] 64 128 596 0 2700 15393 -
KASUMI 64 128 1264 24 11939 11939 47,6
KATAN 64 80 338 18 72063 88525 289,2
KLEIN 64 80 1268 18 6095 7658 25,1
mCrypton 64 96 1076 28 16457 22656 68
NOEKEON 128 128 364 32 23517 23502 95,9
PRESENT 64 80 1000 18 11342 13599 45,3
PRESENT[9] 64 80 936 0 10723 11239 -
SEA 96 96 426 24 41604 40860 173,7
SEA[9] 96 96 2132 0 9654 9654 -
TEA 64 128 648 24 7408 7539 30,3
TEA[9] 64 128 1140 0 6271 6299 -

First, as our primary goal is to consider compact implementations, we com-
pare our code sizes with the ones listed in [9]. Note, however, that secure imple-
mentation is not considered a goal of this work. As illustrated in Figure 1, we
reduce the memory footprint for most investigated ciphers, with specially strong
improvements for DESXL, HIGHT and SEA. The code sizes among our new
implementations can also be compared using this figure. The frontrunners are
HIGHT, NOEKEON, SEA and KATAN (all take less than 500 bytes of ROM).



One can notice the relatively poor performances of mCrypton, PRESENT and
KLEIN. This can in part be explained by the hardware-oriented flavor of these
ciphers (e.g., the use of bit permutations or manipulation of 4-bit nibbles is not
optimal when using 8-bit microcontrollers). As expected, standard ciphers such
as AES and KASUMI are more expensive, but only up to a limited extent since
both can be implemented using less than 2000 bytes of ROM.

The RAM usage in Figure 2 first exhibits the large needs of IDEA regarding
this metric (232 words) that is essentially due to the need to store a precomputed
key schedule for this cipher. Besides, and following our design guidelines, this
metric essentially reflects the size of the intermediate state that has to be stored
during the execution of the algorithms. Note that for AES, this is in contrast to
the “Furious” implementation [18] that uses 192 bytes of RAM and explains our
slightly reduced performance for this cipher.

The cycle count in Figure 3 clearly illustrates the performance loss that
is implied by the use of simple round functions in most lightweight ciphers.
This loss is critical for DESXL and KATAN where the large number of round
iterations leads to cycle counts beyond 50,000 cycles. It is also large for SEA,
NOEKEON and HIGHT. By contrast, these metrics show the excellent efficiency
of AES. Cycle count for decryption (Figure 4) shows similar results, with some
noticeable changes. Most visibly, IDEA decryption is much less efficient than
its encryption. AES also shows an non-negligible overhead when decrypting. In
contrast, a number of ciphers behave identically in encryption and decryption,
e.g., SEA where the two routines perform almost identical.

As expected, the energy consumption of all the implemented ciphers (Fig-
ure 5) is strongly correlated with the cycle count, confirming the experimental
results in [7]. However, slight code dependencies can be noticed. This raises an
interesting question whether (and to what extend) different coding styles can
further impact the energy consumption.

Lastly, the combined metric in Figure 6 first shows the excellent size vs.
performance trade-off offered by AES. Among the low-cost ciphers, NOEKEON
and TEA exhibit excellent figures as well, most likely due to their very simple
key scheduling. This comes at the cost of possible security concerns regarding
related-key attacks. HIGHT and KLEIN provide a good trade-off between code
size and cycle count. A similar comment applies to SEA, where parts of the
overhead comes from a complex key scheduling algorithm (key rounds are as
complex as the rounds for this cipher). Despite their hardware-oriented nature,
PRESENT and mCrypton offer decent performance on 8-bit devices as well.
KATAN falls a bit behind, mainly because of its very large cycle count. Only
DESXL appears not to be suitable in such an implementation context.

7 Conclusion

This paper reported on an initiative to evaluate the performance of different
standard and lightweight block ciphers on a low cost microcontroller. In total,



12 different ciphers have been implemented with compactness as main optimiza-
tion criteria. Their source code is available on a web page, under an open-source
license. Our results improve most prior work obtained for similar devices. They
highlight the different trade-offs between code size and cycle count that is offered
by different algorithms. They also put forward the weaker performances of ci-
phers that were specifically designed with hardware performance in mind. Scopes
for further research include the extension of this work towards more algorithms
and the addition of countermeasures against physical attacks.

Acknowledgements. This work has been funded in part by the European Com-
mission’s ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP pro-
gram P6/26 BCRYPT, by the ERC project 280141 (acronym CRASH), by the
7th framework European project TAMPRES, by the Walloon region’s S@T Sky-
win, MIPSs and NANOTIC-COSMOS projects. This work has been also been
supported in part by the Ministry of Economic Affairs and Energy of the State of
North Rhine-Westphalia (Grant 315-43-02/2-005-WFBO-009). Stéphanie Kerck-
hof is a PhD student funded by a FRIA grant, Belgium. F.-X. Standaert is a
Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S).
Zheng Gong is supported by NSFC (No. 61100201). The authors would like
to thank Svetla Nikova for her help regarding the implementation of the block
cipher KLEIN.

References

1. 3rd Generation Partnership Project. Technical Specification Group Services and
System Aspects, 3G Security, Specification of the 3GPP Confidentiality and In-
tegrity Algorithms, Document 2: KASUMI Specification (Release 10), 2011.

2. ATMEL. AVR 8-bit Microcontrollers, http://www.atmel.com/products/avr/.

3. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Ci-
pher. In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727 of LNCS,
pages 450–466. Springer, 2007.

4. C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In C. Clavier and
K. Gaj, editors, CHES, volume 5747 of LNCS, pages 272–288. Springer, 2009.

5. J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Nessie Proposal: NOEKEON,
2000. Available online at http://gro.noekeon.org/Noekeon-spec.pdf.

6. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

7. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the Energy Cost
of Communication and Cryptography in Wireless Sensor Networks. In WiMob,
pages 580–585. IEEE, 2008.

8. T. Eisenbarth, Z. Gong, T. Güneysu, S. Heyse, S. Indesteege, S. Kerckhof, F. Koe-
une, T. Nad, T. Plos, F. Regazzoni, F.-X. Standaert, and L. van Oldeneel tot
Oldenzeel. Implementations of Low-Cost Block Ciphers in Atmel AVR Devices,
2011. http://perso.uclouvain.be/fstandae/lightweight_ciphers/.



9. T. Eisenbarth, S. S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A Survey of
Lightweight-Cryptography Implementations. IEEE Design & Test of Computers,
24(6):522–533, 2007.

10. K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and Comprehensive Methodology
for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs. In Mangard and Standaert [16], pages 264–278.

11. Z. Gong, S. Nikova, and Y.-W. Law. KLEIN: A New Family of Lightweight Block
Ciphers. to appear in the proceedings of RFIDsec 2011.

12. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In L. Goubin and M. Matsui, editors, CHES, volume 4249
of LNCS, pages 46–59. Springer, 2006.

13. X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard. In
EUROCRYPT, pages 389–404, 1990.

14. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES
Variants. In A. Biryukov, editor, FSE, volume 4593 of LNCS, pages 196–210.
Springer, 2007.

15. C. H. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung, editors,
WISA, volume 3786 of LNCS, pages 243–258. Springer, 2005.

16. S. Mangard and F.-X. Standaert, editors. Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of LNCS. Springer, 2010.

17. M. Matsui. New Block Encryption Algorithm MISTY. In E. Biham, editor, FSE,
volume 1267 of LNCS, pages 54–68. Springer, 1997.

18. B. Poettering. RijndaelFurious AES-128 Implementation for AVR Devices, 2007.
Available online at http://point-at-infinity.org/avraes/.

19. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, CARDIS, volume 3928 of LNCS, pages
222–236. Springer, 2006.

20. C. Wenzel-Benner and J. Gräf. XBX: eXternal Benchmarking eXtension for the
SUPERCOP Crypto Benchmarking Framework. In Mangard and Standaert [16],
pages 294–305.

21. D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption Algorithm. In
B. Preneel, editor, FSE, volume 1008 of LNCS, pages 363–366. Springer, 1994.



Appendix

Fig. 1: Code size: comparison with previous work [9].

Fig. 2: Performance evaluation: RAM use.



Fig. 3: Performance evaluation: cycle count (encryption).

Fig. 4: Performance evaluation: cycle count (decryption).



Fig. 5: Performance evaluation: energy consumption.

Fig. 6: Performance evaluation: combined metric.


