Abstract
Collision resistance is a fundamental property required for cryptographic hash functions. One way to ensure collision resistance is to use hash functions based on public key cryptography (PKC) which reduces collision resistance to a hard mathematical problem, but such primitives are usually slow. A more practical approach is to use symmetric-key design techniques which lead to faster schemes, but collision resistance can only be heuristically inferred from the best probability of a single differential characteristic path. We propose a new hash function design with variable hash output sizes of 128, 256, and 512 bits, that reduces this gap. Due to its inherent Substitution-Permutation Network (SPN) structure and JH mode of operation, we are able to compute its differential collision probability using the concept of differentials. Namely, for each possible input differences, we take into account all the differential paths leading to a collision and this enables us to prove that our hash function is secure against a differential collision attack using a single input difference. None of the SHA-3 finalists could prove such a resistance. At the same time, our hash function design is secure against pre-image, second pre-image and rebound attacks, and is faster than PKC-based hashes. Part of our design includes a generalization of the optimal diffusion used in the classical wide-trail SPN construction from Daemen and Rijmen, which leads to near-optimal differential bounds when applied to non-square byte arrays. We also found a novel way to use parallel copies of a serial matrix over the finite field GF(24), so as to create lightweight and secure byte-based diffusion for our design. Overall, we obtain hash functions that are fast in software, very lightweight in hardware (about 4625 GE for the 256-bit hash output) and that provide much stronger security proofs regarding collision resistance than any of the SHA-3 finalists.
The full version of this paper can be found on the eprint archive at http://eprint.iacr.org .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 Proposal: FSB. Submission to NIST (2008)
Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010), http://131002.net/quark/
Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 Proposal BLAKE. Candidate to the NIST Hash Competition (2008), http://131002.net/blake/
Barreto, P., Rijmen, V.: The Whirlpool Hashing Function, http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2009) (updated)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. In: ECRYPT Hash Workshop (2007)
Bhattacharyya, R., Mandal, A., Nandi, M.: Security Analysis of the Mode of JH Hash Function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 168–191. Springer, Heidelberg (2010)
Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Multivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)
Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)
Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)
Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)
Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005); The HDL specification is available at the author’s official webpage http://faculty.nps.edu/drcanrig/pub/index.html
Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)
Intel Corporation. Advanced Encryption Standard (AES) Instruction Set (October 30, 2008), http://softwarecommunity.intel.com/articles/eng/3788.htm
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)
Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to NIST, Round 2 (2009)
Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schlaffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (2009) (updated)
Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)
Henzen, L., Aumasson, J.-P., Meier, W., Phan, R.C.W.: VLSI Characterization of the Cryptographic Hash Function BLAKE. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (99), 1–9
Nakahara Jr., J., Abrahão, É.: A New Involutary MDS Matrix for AES. International Journal of Network Security 9(2), 109–116 (2009)
Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1996)
Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum Differential and the Maximum Linear Hull Probability for SPN Structures and AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer, Heidelberg (2003)
Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)
Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)
Shannon, C.: Communication Theory of Secrecy System. Bell System Technical Journal 28, 656–715 (1949)
Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M., Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware Implementations of the SHA-3 Candidates Arirang, Blake, Grøstl, and Skein. IACR ePrint archive, Report 2009/349 (2009)
Wu, H.J.: The Hash Function JH. Submission to NIST (September 2009) (updated), http://ehash.iaik.tugraz.at/uploads/1/1d/Jh20090915.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Choy, J. et al. (2012). SPN-Hash: Improving the Provable Resistance against Differential Collision Attacks. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-31410-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31409-4
Online ISBN: 978-3-642-31410-0
eBook Packages: Computer ScienceComputer Science (R0)