Abstract
Cryptographic constructions of one primitive or protocol from another one usually come with a reductionist security proof, in the sense that the reduction turns any adversary breaking the derived scheme into a successful adversary against the underlying scheme. Very often the reduction is black-box in the sense that it only looks at the input/output behavior of the adversary and of the underlying primitive. Here we survey the power and the limitations of such black-box reductions, and take a closer look at the recent method of meta-reductions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way functions on NP-hardness. In: Kleinberg, J.M. (ed.) 38th ACM STOC, May 21-23, pp. 701–710. ACM Press, Seattle (2006)
Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, October 14-17, pp. 106–115. IEEE Computer Society Press, Las Vegas (2001)
Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for np problems. SIAM J. Comput. 36(4), 1119–1159 (2006)
Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of Non-malleable Hash and One-Way Functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 524–541. Springer, Heidelberg (2009)
Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)
Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the Power of Zero-Knowledge Proofs in Cryptographic Constructions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011)
Brown, D.R.L.: Breaking rsa may be as difficult as factoring. IACR Cryptology ePrint Archive (2005), http://eprint.iacr.org/2005/380
Coron, J.-S.: Security Proof for Partial-Domain Hash Signature Schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Heidelberg (2002)
Dodis, Y., Haitner, I., Tentes, A.: On the Instantiability of Hash-and-Sign RSA Signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer, Heidelberg (2012)
Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)
Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)
Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426. ACM (1990)
Fiore, D., Schröder, D.: Uniqueness Is a Different Story: Impossibility of Verifiable Random Functions from Trapdoor Permutations. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012)
Fischlin, M.: On the Impossibility of Constructing Non-interactive Statistically-Secret Protocols from Any Trapdoor One-Way Function. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 79–95. Springer, Heidelberg (2002)
Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random Oracles with(out) Programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)
Fischlin, M., Schröder, D.: On the Impossibility of Three-Move Blind Signature Schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)
Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, May 17-20, pp. 133–142. ACM Press, Victoria (2008)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, June 6-8, pp. 99–108. ACM Press, San Jose (2011)
Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: 41st FOCS, November 12-14, pp. 325–335. IEEE Computer Society Press, Redondo Beach (2000)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33, 792–807 (1986)
Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. In: 47th FOCS, October 21-24, pp. 719–728. IEEE Computer Society Press, Berkeley (2006)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)
Hofheinz, D.: Possibility and impossibility results for selective decommitments. Journal of Cryptology 24(3), 470–516 (2011)
Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure Hash Functions Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)
Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Complexity Theory Conference, pp. 134–147 (1995)
Impagliazzo, R., Luby, M.: One-way functions are essential for complexity-based cryptography. In: 30th FOCS, October 30-November 1, pp. 230–235. IEEE Computer Society Press, Research Triangle Park (1989)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC, May 15-17, pp. 44–61. ACM Press, Seattle (1989)
Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2) (1988)
Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, May 15-17, pp. 33–43. ACM Press, Seattle (1989)
Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)
Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, June 6-8, pp. 109–118. ACM Press, San Jose (2011)
Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, May 14-16, pp. 387–394. ACM Press, Baltimore (1990)
Rudich, S.: The Use of Interaction in Public Cryptosystems (Extended Abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer, Heidelberg (1992)
Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)
Seurin, Y.: On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012)
Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical Journal 28(4), 656–715 (1949)
Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischlin, M. (2012). Black-Box Reductions and Separations in Cryptography. In: Mitrokotsa, A., Vaudenay, S. (eds) Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31410-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-31410-0_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31409-4
Online ISBN: 978-3-642-31410-0
eBook Packages: Computer ScienceComputer Science (R0)