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Overview

• LP problems and the dual simplex method

• Why use dual simplex method

• Why exploit parallelism

• Dual revised simplex with suboptimization

• Preliminary results

• Alternative product form update for GPU extension

• Conclusions
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Linear programming (LP)

minimize f = cTx

subject to Ax = b x ≥ 0

• Fundamental model in optimal decision-making

• Solution techniques

◦ Simplex method (1947)

◦ Interior point methods (1984–date)

• Large problems have

◦ 103–107 variables

◦ 103–107 constraints

• Matrix A is (usually) sparse

STAIR: 356 rows, 467 columns and 3856 nonzeros
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Mathematics of LP

minimize f = cTx

subject to Ax = b x ≥ 0
(P )

• Geometry:

◦ Feasible points form a convex polyhedron

• Results:

◦ An optimal solution occurs at a vertex

◦ At a vertex the variable set can be partitioned as B ∪ N and constraints as

BxB +NxN = b

so B is nonsingular and xN = 0
• Dual LP problem:

maximize f = bTy

subject to ATy + s = c s ≥ 0
(D)

• Result:

◦ Optimal partition B ∪ N for (P ) also solves (D)
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The reduced LP problem

At a vertex, for a partition B ∪ N with B nonsingular and xN = 0, the original problem is

minimize f = cTNxN + cTBxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0.

Eliminate xB from the objective to give the reduced LP problem

minimize f = sTNxN + f̂

subject to N̂ xN + I xB = b̂

xN ≥ 0 xB ≥ 0,

where b̂ = B−1b, N̂ = B−1N , f̂ = cTBb̂ and sN is given by

s
T
N = c

T
N − c

T
BN̂

Vertex is optimal ⇐⇒ xB ≥ 0 and sN ≥ 0
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Primal vs dual simplex

Finding an optimal partition B ∪ N underpins the simplex method

• Primal simplex method

◦ Maintains xB ≥ 0
◦ Moves along edges of the feasible region of (P )

◦ Terminates when sN ≥ 0

• Dual simplex method

◦ Maintains sN ≥ 0
◦ Moves along edges of the feasible region of (D)

◦ Terminates when xB ≥ 0

• Adaptations of both are required to find initial feasible point
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Implementation: dual standard simplex method

N B RHS

1
... N̂ I b̂

m

0 sTN 0T −f̂

In each iteration:

• Choose a row p with b̂p < 0

• Use the pivotal row p of N̂ and sN to find the pivotal column q with β = sq/âpq

• Exchange indices p and q between B and N
• Update tableau corresponding to this basis change

N̂ := N̂ − (1/âpq)âqâ
T
p b̂ := b̂− (b̂p/âpq)âq

sTN := sTN − βâ
T
p −f̂ := −f̂ − βb̂p
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Implementation: dual revised simplex method

• Maintains a representation of B−1 (rather than explicit N̂)

• Rows and columns of N̂ obtained as required

• Pivotal row is

âTp = πTpN , where πTp = eTpB
−1

• Pivotal column is

âq = B−1aq, where aq is column q of A

• Representation of B−1 is updated by exploiting

B := B + (aq − ap)eTp
• Periodically a representation of B−1 is formed from scratch

• Efficient solution of large sparse LP problems requires the revised simplex method
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Implementation: representing B−1

• Factorize some basis matrix B0 = L0U0

Store non-trivial columns of L0 and U0 as representation of B−1
0

• Updating representation of B−1 each iteration exploits

B := B + (aq − ap)eTp
= B[I + B−1(aq − ap)eTp ]
= B[I + (âq − ep)eTp ]

where âq is the pivotal column so, using Sherman-Morrison and âpq = eTp âq,

B−1
k =

[
I − (âq−ep)eTp

âpq

]
B−1
k−1= E−1

k B−1
k−1

• Hence

B−1
k = H−1

k B−1
0 where H−1

k = E−1
k . . . E−1

1
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Summary: major computational components for simplex implementations

Standard simplex method (SSM)

• Update tableau N̂ := N̂ − (1/âpq)âqâ
T
p

Revised simplex method (RSM)

• Operations

◦ Form πTp = eTpB
−1

◦ Form âTp = πTpN

◦ Form âq = B−1aq

• Inversion of B

• Distinctive features

◦ Vectors ep, aq are always sparse

◦ B may be highly reducible

◦ B−1 may be sparse

◦ Vectors πp, âp and âq may be sparse

• Efficient implementations must exploit these features

H and McKinnon (1998–2005)
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Why use the dual simplex method?

• Dual simplex method has been around almost as long as the primal simplex method

• More of theoretical interest until 1990’s

• Now preferred to primal simplex

◦ Easier to find feasible point of (D) to start

◦ Has some efficient algorithmic tricks not available to primal

◦ Dual feasibility retained when constraints are added (MIP)

• Primal simplex method applied to (D) can be made computationally equivalent
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CPLEX LP solvers applied to standard test problems

• Dual simplex better than primal but barrier clearly better
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CPLEX LP solvers applied to standard test problems

• Little to choose between dual simplex and barrier with crossover
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Parallel simplex: why?

• Moore’s law drives core counts per processor, but clock speeds will stabilise

• Serial performance of simplex is spectacularly good

◦ Flop count per iteration is near optimal

◦ Number of iterations is near optimal

• Can’t wait for faster serial processors or algorithmic improvement

• Simplex method must try to exploit parallelism
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Parallel simplex: immediate scope

• Standard simplex method

◦ Update tableau N̂ := N̂ − (1/âpq)âqâ
T
p

Level 2 BLAS with N̂ dense so “massively parallel”

• Revised simplex method

◦ Operations πTp = eTpB
−1 and âq = B−1aq are “inherently serial”

◦ Operation âTp = πTpN is “massively parallel”

Amdahl’s law implies little immediate scope for exploiting parallelism
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Parallel simplex: nature of B−1
0 and H−1

Properties of B−1
0 and H−1 are a majr influence on parallel schemes

• B−1
0 requires many vectors but they are short O(1)

◦ Parallelism is fine grained

◦ Unsuitable for data parallelism

◦ Aim for task parallelism

• H−1 requires few vectors but they are long O(m)

◦ Operations with H−1 can be posed as a sparse matrix-vector product

◦ Suitable for data parallelism
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Parallel simplex: past work

• Data parallel standard simplex method

◦ Good parallel efficiency was achieved

◦ Totally uncompetitive with serial revised simplex method without prohibitive resources

• Data parallel revised simplex method

◦ Only immediate parallelism is in forming πTpN

◦ When n� m, cost of πTpN dominates: significant speed-up was achieved

Bixby and Martin (2000)

• Task parallel revised simplex method

◦ Overlap computational components for different iterations

Wunderling (1996), H and McKinnon (1995-2005)

◦ Modest speed-up was achieved on general sparse LP problems

• All data and task parallel implementations compromised by serial inversion of B

Review: H (2010)
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Architectures: CPU or GPU or both?

Heterogeneous desk-top architectures

CPU:

• Fewer, faster cores

• Relatively slow memory transfer

• Welcomes algorithmically complex code

• Full range of development tools

GPU:

• More, slower cores

• Relatively fast memory transfer

• Global communication is expensive/difficult

• Very limited development tools

CPU and GPU:

• Possibly combine CPU and GPU to harness full computing power
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Scope for task and data parallelism via suboptimization

• Perform multiple pricing—standard simplex suboptimization

◦ Primal: Orchard-Hays (1968)

◦ Dual: Rosander (1975)

• Algorithmically

◦ Primal: Identify attractive column slice of tableau

◦ Dual: Identify attractive row slice of tableau

◦ Both perform standard simplex iterations to identify a set of basis changes

• Computationally

◦ Solve systems with multiple RHS

◦ Update tableaux

◦ Form matrix products with multiple vectors

• Attractive in the days when memory access was expensive...

Primal: Parallel implementations by Wunderling (1996), H and McKinnon (1995-2005)

Dual: New, even in serial?
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Dual revised simplex method with suboptimization

Let the current basis be Bk

• Choose attractive row set P
• Form rows P of B−1

k : π̂TP = eTPB
−1
k

• Form rows P of tableau: âTP = πTPNk

• Perform l dual standard simplex iterations on âTP to identify column set Q
• Form pivotal columns for q ∈ Q: âQ = B−1

k aQ

• Use âQ to update b̂k and H−1
k to obtain b̂k+l and representation of B−1

k+l
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Parallel operations with B−1
k

• Consider operations with B−1
k = H−1

k B−1
0 in stages corresponding to B0 and Hk

• Form π̂TP = eTPB
−1
k as

π̃
T
P = e

T
PH

−1
k

then

π̂
T
P = π̃

T
PB
−1
0

• Form âQ = B−1
k aQ as

ãQ = B
−1
0 aQ

then

âQ = H
−1
k ãQ
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Gantt chart of computation and data

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+lH−1
k+lH−1

k ãQB−1
0 aQDual SSMπT

PNk

Invert Bk+lInvert Bk

π̃T
PB−1

0eT
PH−1

kP

• Inversion of Bk can take a whole major iteration...

◦ ... but not longer—for reasons of numerical stability

◦ Serial inversion could lead to load imbalance

◦ Inversion could be parallel?
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Prototype implementation

• Written by Qi Huangfu (2010)

• Uses (generally) highly efficient core routines

Hyper-sparse matrix-vector product πTPNk

Dual steepest edge pricing

• Does not (yet) use

Hyper-sparse operations with B−1

Bound-flipping ratio test

• Written in C++ with OpenMP using the Intel C++ compiler

• Tested on a dual quad-core AMD Opteron 2378 system

• Uses one pivotal row per core used

• First run last week!
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Preliminary results

pds-06: 9882 rows, 28655 columns and 82269 nonzeros

Cores

1 2 4 8 clp dual

Major iterations 10266 5049 2543 1253 9808

Total iterations 10266 9625 8820 7616 9808

Solution time (s) 3.76 2.51 2.00 1.52 1.92

Speed (iter/s) 2730 3836 4419 5017 5111
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Preliminary results

pds-10: 16559 rows, 48763 columns and 140063 nonzeros

Cores

1 2 4 8 clp dual

Major iterations 17983 9158 4807 2557 17713

Total iterations 17983 17051 16263 15404 17713

Solution time (s) 12.58 10.01 6.86 5.72 6.61

Speed (iter/s) 1430 1704 2370 2695 2682
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Can the simplex method exploit a GPU?

• Standard simplex method implemented in single precision by Smith as i8

• Experiments on machine with two quad-core AMD CPUs and GTX285 NVIDIA GPU

• For dense LP problems: best results

Solver Type HPC Time Iterations Speed (iter/s)

gurobi primal RSM serial 1357 16034 12

gurobi dual RSM serial 976 14518 15

i6 primal SSM parallel 4039 288419 79

i8 primal SSM GPU 800 221157 276

• Not (really) of practical value but a good learning exercise

• No hope of beating serial solvers on sparse LP problems

• Now adding steepest edge and extending to double precision for Tesla C2070
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GPU extension

• Put dual standard simplex iterations on a GPU

• Consider putting other simple “rectangular” operations on a GPU

◦ Sparse matrix-vector product πTPNk

GPU out-performs comparable CPU for full vector (eg) Vuduc et al. (2010)

Nvidia interested in case of sparse vector

◦ Operations with H−1
k

Can be posed as a sparse matrix-vector product

• Need to limit data transfer between main memory and GPU
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Splitting work between CPU and GPU

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k ãQ

B−1
0 aQ

Dual SSM

Invert Bk+lInvert Bk

πT
PNk

π̃T
PB−1

0

eT
PH−1

k

P

• CPU and GPU operations can be overlapped

• Data traffic between main memory and GPU is high
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Overlapping CPU/GPU computation and communication

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k ãQ

B−1
0 aQ

Dual SSMπT
PNk

Invert Bk+lInvert Bk

π̃T
PB−1

0

eT
PH−1

k

P

• Lucky if overlaping computation accommodates communication
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Alternative product form update

• Little-known (unknown?) alternative product form update may offer a solution

• Updating representation of B−1 each iteration exploits

B := B + (aq − ap)eTp
= [I + (aq − ap)eTpB

−1]B

= [I + (aq − ap)πTp ]B

so, using Sherman-Morrison,

B
−1
k = B

−1
k−1

[
I −

(aq − ap)πTp
âpq

]
= B

−1
k−1E

−1
k

• Hence reversed the order of inverse and update in representation of B−1
k

B−1
k = B−1

0 H−1
k where H−1

k = E−1
1 . . . E−1

k
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Alternative dual revised simplex method with suboptimization

• Parallel operations with B−1
k = B−1

0 H−1
k

• Form π̂TP = eTPB
−1
k as

π̃
T
P = e

T
PB
−1
0

then

π̂
T
P = π̃

T
PH

−1
k

• Form âQ = B−1
k aQ as

ãQ = H
−1
k aQ

then

âQ = B
−1
0 ãQ
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Splitting work between CPU and GPU

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k aQ

B−1
0 ãQ

Dual SSM

Invert Bk+l

πT
PNk

eT
PB−1

0

π̃T
PH−1

k

P

• Data traffic between main memory and GPU is lower

• Shorter time for inversion of Bk+l
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Overlapping CPU/GPU computation and communication

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k aQ

B−1
0 ãQ

Dual SSM

Invert Bk+l

πT
PNk

eT
PB−1

0 eT
PB−1

0

π̃T
PH−1

k

P P

• Greater scope for overlapping computation

• Implementation will be very difficult
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Conclusions

• Identified need for simplex method to exploit parallelism

• Developed prototype high performance dual revised simplex solver

• Initial results are encouraging

• Shown that the standard simplex method will run fast on a GPU

• Standard approach to linear algebra bad for CPU-GPU combination

• Alternative product form update may offer a solution
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