
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A high performance dual revised simplex solver

Citation for published version:
Hall, J & Huangfu, Q 2012, 'A high performance dual revised simplex solver', Lecture Notes in Computer
Science, vol. 7203, pp. 143-151. <http://www.maths.ed.ac.uk/hall/PPAM_DualSuboptimization/ERGO-11-
007.pdf>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Lecture Notes in Computer Science

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31464-3_15

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

http://www.maths.ed.ac.uk/hall/PPAM_DualSuboptimization/ERGO-11-007.pdf
http://www.maths.ed.ac.uk/hall/PPAM_DualSuboptimization/ERGO-11-007.pdf
https://www.research.ed.ac.uk/en/publications/54b1538f-92e7-4c82-b1bf-9c2e965c040d


A high performance dual revised simplex solver

Julian Hall, Qi Huangfu and Edmund Smith

School of Mathematics

University of Edinburgh

2nd December 2010

A high performance dual revised simplex solver



Overview

• LP problems and the dual simplex method

• Why use dual simplex method

• Why exploit parallelism

• Dual revised simplex with suboptimization

• Preliminary results

• Alternative product form update for GPU extension

• Conclusions

A high performance dual revised simplex solver
1



Linear programming (LP)

minimize f = cTx

subject to Ax = b x ≥ 0

• Fundamental model in optimal decision-making

• Solution techniques

◦ Simplex method (1947)

◦ Interior point methods (1984–date)

• Large problems have

◦ 103–107 variables

◦ 103–107 constraints

• Matrix A is (usually) sparse

STAIR: 356 rows, 467 columns and 3856 nonzeros

A high performance dual revised simplex solver
2



Mathematics of LP

minimize f = cTx

subject to Ax = b x ≥ 0
(P )

• Geometry:

◦ Feasible points form a convex polyhedron

• Results:

◦ An optimal solution occurs at a vertex

◦ At a vertex the variable set can be partitioned as B ∪ N and constraints as

BxB +NxN = b

so B is nonsingular and xN = 0
• Dual LP problem:

maximize f = bTy

subject to ATy + s = c s ≥ 0
(D)

• Result:

◦ Optimal partition B ∪ N for (P ) also solves (D)

A high performance dual revised simplex solver
3



The reduced LP problem

At a vertex, for a partition B ∪ N with B nonsingular and xN = 0, the original problem is

minimize f = cTNxN + cTBxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0.

Eliminate xB from the objective to give the reduced LP problem

minimize f = sTNxN + f̂

subject to N̂ xN + I xB = b̂

xN ≥ 0 xB ≥ 0,

where b̂ = B−1b, N̂ = B−1N , f̂ = cTBb̂ and sN is given by

s
T
N = c

T
N − c

T
BN̂

Vertex is optimal ⇐⇒ xB ≥ 0 and sN ≥ 0

A high performance dual revised simplex solver
4



Primal vs dual simplex

Finding an optimal partition B ∪ N underpins the simplex method

• Primal simplex method

◦ Maintains xB ≥ 0
◦ Moves along edges of the feasible region of (P )

◦ Terminates when sN ≥ 0

• Dual simplex method

◦ Maintains sN ≥ 0
◦ Moves along edges of the feasible region of (D)

◦ Terminates when xB ≥ 0

• Adaptations of both are required to find initial feasible point

A high performance dual revised simplex solver
5



Implementation: dual standard simplex method

N B RHS

1
... N̂ I b̂

m

0 sTN 0T −f̂

In each iteration:

• Choose a row p with b̂p < 0

• Use the pivotal row p of N̂ and sN to find the pivotal column q with β = sq/âpq

• Exchange indices p and q between B and N
• Update tableau corresponding to this basis change

N̂ := N̂ − (1/âpq)âqâ
T
p b̂ := b̂− (b̂p/âpq)âq

sTN := sTN − βâ
T
p −f̂ := −f̂ − βb̂p

A high performance dual revised simplex solver
6



Implementation: dual revised simplex method

• Maintains a representation of B−1 (rather than explicit N̂)

• Rows and columns of N̂ obtained as required

• Pivotal row is

âTp = πTpN , where πTp = eTpB
−1

• Pivotal column is

âq = B−1aq, where aq is column q of A

• Representation of B−1 is updated by exploiting

B := B + (aq − ap)eTp
• Periodically a representation of B−1 is formed from scratch

• Efficient solution of large sparse LP problems requires the revised simplex method

A high performance dual revised simplex solver
7



Implementation: representing B−1

• Factorize some basis matrix B0 = L0U0

Store non-trivial columns of L0 and U0 as representation of B−1
0

• Updating representation of B−1 each iteration exploits

B := B + (aq − ap)eTp
= B[I + B−1(aq − ap)eTp ]
= B[I + (âq − ep)eTp ]

where âq is the pivotal column so, using Sherman-Morrison and âpq = eTp âq,

B−1
k =

[
I − (âq−ep)eTp

âpq

]
B−1
k−1= E−1

k B−1
k−1

• Hence

B−1
k = H−1

k B−1
0 where H−1

k = E−1
k . . . E−1

1

A high performance dual revised simplex solver
8



Summary: major computational components for simplex implementations

Standard simplex method (SSM)

• Update tableau N̂ := N̂ − (1/âpq)âqâ
T
p

Revised simplex method (RSM)

• Operations

◦ Form πTp = eTpB
−1

◦ Form âTp = πTpN

◦ Form âq = B−1aq

• Inversion of B

• Distinctive features

◦ Vectors ep, aq are always sparse

◦ B may be highly reducible

◦ B−1 may be sparse

◦ Vectors πp, âp and âq may be sparse

• Efficient implementations must exploit these features

H and McKinnon (1998–2005)

A high performance dual revised simplex solver
9



Why use the dual simplex method?

• Dual simplex method has been around almost as long as the primal simplex method

• More of theoretical interest until 1990’s

• Now preferred to primal simplex

◦ Easier to find feasible point of (D) to start

◦ Has some efficient algorithmic tricks not available to primal

◦ Dual feasibility retained when constraints are added (MIP)

• Primal simplex method applied to (D) can be made computationally equivalent

A high performance dual revised simplex solver
10



CPLEX LP solvers applied to standard test problems

• Dual simplex better than primal but barrier clearly better

A high performance dual revised simplex solver
11



CPLEX LP solvers applied to standard test problems

• Little to choose between dual simplex and barrier with crossover

A high performance dual revised simplex solver
12



Parallel simplex: why?

• Moore’s law drives core counts per processor, but clock speeds will stabilise

• Serial performance of simplex is spectacularly good

◦ Flop count per iteration is near optimal

◦ Number of iterations is near optimal

• Can’t wait for faster serial processors or algorithmic improvement

• Simplex method must try to exploit parallelism

A high performance dual revised simplex solver
13



Parallel simplex: immediate scope

• Standard simplex method

◦ Update tableau N̂ := N̂ − (1/âpq)âqâ
T
p

Level 2 BLAS with N̂ dense so “massively parallel”

• Revised simplex method

◦ Operations πTp = eTpB
−1 and âq = B−1aq are “inherently serial”

◦ Operation âTp = πTpN is “massively parallel”

Amdahl’s law implies little immediate scope for exploiting parallelism

A high performance dual revised simplex solver
14



Parallel simplex: nature of B−1
0 and H−1

Properties of B−1
0 and H−1 are a majr influence on parallel schemes

• B−1
0 requires many vectors but they are short O(1)

◦ Parallelism is fine grained

◦ Unsuitable for data parallelism

◦ Aim for task parallelism

• H−1 requires few vectors but they are long O(m)

◦ Operations with H−1 can be posed as a sparse matrix-vector product

◦ Suitable for data parallelism

A high performance dual revised simplex solver
15



Parallel simplex: past work

• Data parallel standard simplex method

◦ Good parallel efficiency was achieved

◦ Totally uncompetitive with serial revised simplex method without prohibitive resources

• Data parallel revised simplex method

◦ Only immediate parallelism is in forming πTpN

◦ When n� m, cost of πTpN dominates: significant speed-up was achieved

Bixby and Martin (2000)

• Task parallel revised simplex method

◦ Overlap computational components for different iterations

Wunderling (1996), H and McKinnon (1995-2005)

◦ Modest speed-up was achieved on general sparse LP problems

• All data and task parallel implementations compromised by serial inversion of B

Review: H (2010)

A high performance dual revised simplex solver
16



Architectures: CPU or GPU or both?

Heterogeneous desk-top architectures

CPU:

• Fewer, faster cores

• Relatively slow memory transfer

• Welcomes algorithmically complex code

• Full range of development tools

GPU:

• More, slower cores

• Relatively fast memory transfer

• Global communication is expensive/difficult

• Very limited development tools

CPU and GPU:

• Possibly combine CPU and GPU to harness full computing power

A high performance dual revised simplex solver
17



Scope for task and data parallelism via suboptimization

• Perform multiple pricing—standard simplex suboptimization

◦ Primal: Orchard-Hays (1968)

◦ Dual: Rosander (1975)

• Algorithmically

◦ Primal: Identify attractive column slice of tableau

◦ Dual: Identify attractive row slice of tableau

◦ Both perform standard simplex iterations to identify a set of basis changes

• Computationally

◦ Solve systems with multiple RHS

◦ Update tableaux

◦ Form matrix products with multiple vectors

• Attractive in the days when memory access was expensive...

Primal: Parallel implementations by Wunderling (1996), H and McKinnon (1995-2005)

Dual: New, even in serial?

A high performance dual revised simplex solver
18



Dual revised simplex method with suboptimization

Let the current basis be Bk

• Choose attractive row set P
• Form rows P of B−1

k : π̂TP = eTPB
−1
k

• Form rows P of tableau: âTP = πTPNk

• Perform l dual standard simplex iterations on âTP to identify column set Q
• Form pivotal columns for q ∈ Q: âQ = B−1

k aQ

• Use âQ to update b̂k and H−1
k to obtain b̂k+l and representation of B−1

k+l

A high performance dual revised simplex solver
19



Parallel operations with B−1
k

• Consider operations with B−1
k = H−1

k B−1
0 in stages corresponding to B0 and Hk

• Form π̂TP = eTPB
−1
k as

π̃
T
P = e

T
PH

−1
k

then

π̂
T
P = π̃

T
PB
−1
0

• Form âQ = B−1
k aQ as

ãQ = B
−1
0 aQ

then

âQ = H
−1
k ãQ

A high performance dual revised simplex solver
20



Gantt chart of computation and data

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+lH−1
k+lH−1

k ãQB−1
0 aQDual SSMπT

PNk

Invert Bk+lInvert Bk

π̃T
PB−1

0eT
PH−1

kP

• Inversion of Bk can take a whole major iteration...

◦ ... but not longer—for reasons of numerical stability

◦ Serial inversion could lead to load imbalance

◦ Inversion could be parallel?

A high performance dual revised simplex solver
21



Prototype implementation

• Written by Qi Huangfu (2010)

• Uses (generally) highly efficient core routines

Hyper-sparse matrix-vector product πTPNk

Dual steepest edge pricing

• Does not (yet) use

Hyper-sparse operations with B−1

Bound-flipping ratio test

• Written in C++ with OpenMP using the Intel C++ compiler

• Tested on a dual quad-core AMD Opteron 2378 system

• Uses one pivotal row per core used

• First run last week!

A high performance dual revised simplex solver
22



Preliminary results

pds-06: 9882 rows, 28655 columns and 82269 nonzeros

Cores

1 2 4 8 clp dual

Major iterations 10266 5049 2543 1253 9808

Total iterations 10266 9625 8820 7616 9808

Solution time (s) 3.76 2.51 2.00 1.52 1.92

Speed (iter/s) 2730 3836 4419 5017 5111

A high performance dual revised simplex solver
23



Preliminary results

pds-10: 16559 rows, 48763 columns and 140063 nonzeros

Cores

1 2 4 8 clp dual

Major iterations 17983 9158 4807 2557 17713

Total iterations 17983 17051 16263 15404 17713

Solution time (s) 12.58 10.01 6.86 5.72 6.61

Speed (iter/s) 1430 1704 2370 2695 2682

A high performance dual revised simplex solver
24



Can the simplex method exploit a GPU?

• Standard simplex method implemented in single precision by Smith as i8

• Experiments on machine with two quad-core AMD CPUs and GTX285 NVIDIA GPU

• For dense LP problems: best results

Solver Type HPC Time Iterations Speed (iter/s)

gurobi primal RSM serial 1357 16034 12

gurobi dual RSM serial 976 14518 15

i6 primal SSM parallel 4039 288419 79

i8 primal SSM GPU 800 221157 276

• Not (really) of practical value but a good learning exercise

• No hope of beating serial solvers on sparse LP problems

• Now adding steepest edge and extending to double precision for Tesla C2070

A high performance dual revised simplex solver
25



GPU extension

• Put dual standard simplex iterations on a GPU

• Consider putting other simple “rectangular” operations on a GPU

◦ Sparse matrix-vector product πTPNk

GPU out-performs comparable CPU for full vector (eg) Vuduc et al. (2010)

Nvidia interested in case of sparse vector

◦ Operations with H−1
k

Can be posed as a sparse matrix-vector product

• Need to limit data transfer between main memory and GPU

A high performance dual revised simplex solver
26



Splitting work between CPU and GPU

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k ãQ

B−1
0 aQ

Dual SSM

Invert Bk+lInvert Bk

πT
PNk

π̃T
PB−1

0

eT
PH−1

k

P

• CPU and GPU operations can be overlapped

• Data traffic between main memory and GPU is high

A high performance dual revised simplex solver
27



Overlapping CPU/GPU computation and communication

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k ãQ

B−1
0 aQ

Dual SSMπT
PNk

Invert Bk+lInvert Bk

π̃T
PB−1

0

eT
PH−1

k

P

• Lucky if overlaping computation accommodates communication

A high performance dual revised simplex solver
28



Alternative product form update

• Little-known (unknown?) alternative product form update may offer a solution

• Updating representation of B−1 each iteration exploits

B := B + (aq − ap)eTp
= [I + (aq − ap)eTpB

−1]B

= [I + (aq − ap)πTp ]B

so, using Sherman-Morrison,

B
−1
k = B

−1
k−1

[
I −

(aq − ap)πTp
âpq

]
= B

−1
k−1E

−1
k

• Hence reversed the order of inverse and update in representation of B−1
k

B−1
k = B−1

0 H−1
k where H−1

k = E−1
1 . . . E−1

k

A high performance dual revised simplex solver
29



Alternative dual revised simplex method with suboptimization

• Parallel operations with B−1
k = B−1

0 H−1
k

• Form π̂TP = eTPB
−1
k as

π̃
T
P = e

T
PB
−1
0

then

π̂
T
P = π̃

T
PH

−1
k

• Form âQ = B−1
k aQ as

ãQ = H
−1
k aQ

then

âQ = B
−1
0 ãQ

A high performance dual revised simplex solver
30



Splitting work between CPU and GPU

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k aQ

B−1
0 ãQ

Dual SSM

Invert Bk+l

πT
PNk

eT
PB−1

0

π̃T
PH−1

k

P

• Data traffic between main memory and GPU is lower

• Shorter time for inversion of Bk+l

A high performance dual revised simplex solver
31



Overlapping CPU/GPU computation and communication

GPU

CPU

Operation with âT
P Operation with âQ Operation with bk

Operation with H−1
k Operation with B−1

0 Operation with Nk

bk+l

H−1
k+lH−1

k aQ

B−1
0 ãQ

Dual SSM

Invert Bk+l

πT
PNk

eT
PB−1

0 eT
PB−1

0

π̃T
PH−1

k

P P

• Greater scope for overlapping computation

• Implementation will be very difficult

A high performance dual revised simplex solver
32



Conclusions

• Identified need for simplex method to exploit parallelism

• Developed prototype high performance dual revised simplex solver

• Initial results are encouraging

• Shown that the standard simplex method will run fast on a GPU

• Standard approach to linear algebra bad for CPU-GPU combination

• Alternative product form update may offer a solution

A high performance dual revised simplex solver
33



References

[1] R. E. Bixby and A. Martin. Parallelizing the dual simplex method. INFORMS Journal on

Computing, 12:45–56, 2000.

[2] J. A. J. Hall. Towards a practical parallelisation of the simplex method. Computational

Management Science, 7(2):139–170, 2010.

[3] J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revised simplex algorithm

incorporating minor iterations and Devex pricing. In J. Waśniewski, J. Dongarra, K. Madsen,

and D. Olesen, editors, Applied Parallel Computing, volume 1184 of Lecture Notes in Computer

Science, pages 67–76. Springer, 1996.

[4] J. A. J. Hall and K. I. M. McKinnon. ASYNPLEX, an asynchronous parallel revised simplex

method algorithm. Annals of Operations Research, 81:27–49, 1998.

[5] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and how

to exploit it. Computational Optimization and Applications, 32(3):259–283, December 2005.

[6] W. Orchard-Hays. Advanced Linear programming computing techniques. McGraw-Hill, New

York, 1968.

A high performance dual revised simplex solver
34



[7] R. R. Rosander. Multiple pricing and suboptimization in dual linear programming algorithms.

Mathematical Programming Study, 4:108–117, 1975.

[8] R. Vuduc, A. Chandramowlishwarany, J. Choi, M. Guney, and A. Shringarpurez. On the limits

of GPU acceleration. Not known, 2010.

[9] R. Wunderling. Paralleler und objektorientierter simplex. Technical Report TR-96-09, Konrad-

Zuse-Zentrum für Informationstechnik Berlin, 1996.

A high performance dual revised simplex solver
35


