Abstract
When solving families of related linear programming (LP) problems and many classes of single LP problems, the simplex method is the preferred computational technique. Hitherto there has been no efficient parallel implementation of the simplex method that gives good speed-up on general, large sparse LP problems. This paper presents a variant of the dual simplex method and a prototype parallelisation scheme. The resulting implementation, ParISS, is efficient when run in serial and offers modest speed-up for a range of LP test problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bixby, R.E., Martin, A.: Parallelizing the dual simplex method. INFORMS Journal on Computing 12, 45–56 (2000)
Carolan, W.J., Hill, J.E., Kennington, J.L., Niemi, S., Wichmann, S.J.: An empirical evaluation of the KORBX algorithms for military airlift applications. Operations Research 38, 240–248 (1990)
Dantzig, G.B., Orchard-Hays, W.: The product form for the inverse in the simplex method. Math. Comp. 8, 64–67 (1954)
Forrest, J.J.H., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming. Mathematical Programming 57, 341–374 (1992)
Forrest, J.J.H., Tomlin, J.A.: Vector processing in the simplex and interior methods for linear programming. Annals of Operations Research 22, 71–100 (1990)
Gay, D.M.: Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter 13, 10–12 (1985)
Hall, J.A.J.: Towards a practical parallelisation of the simplex method. Computational Management Science 7, 139–170 (2010)
Hall, J.A.J., McKinnon, K.I.M.: PARSMI, a Parallel Revised Simplex Algorithm Incorporating Minor Iterations and Devex Pricing, in Applied Parallel Computing. In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184, pp. 67–76. Springer, Heidelberg (1996)
Hall, J.A.J., McKinnon, K.I.M.: ASYNPLEX, an asynchronous parallel revised simplex method algorithm. Annals of Operations Research 81, 27–49 (1998)
Hall, J.A.J., McKinnon, K.I.M.: Hyper-sparsity in the revised simplex method and how to exploit it. Computational Optimization and Applications 32, 259–283 (2005)
Koberstein, A.: Progress in the dual simplex algorithm for solving large scale LP problems: techniques for a fast and stable implementation. Computational Optimization and Applications 41, 185–204 (2008)
Koberstein, A., Suhl, U.H.: Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms. Computational Optimization and Applications 37, 49–65 (2007)
Lougee-Heimer, R., et al.: The COIN-OR initiative: Open source accelerates operations research progress. ORMS Today 28, 20–22 (2001)
Orchard-Hays, W.: Advanced Linear programming computing techniques. McGraw-Hill, New York (1968)
Rosander, R.R.: Multiple pricing and suboptimization in dual linear programming algorithms. Mathematical Programming Study 4, 108–117 (1975)
Shu, W.: Parallel implementation of a sparse simplex algorithm on MIMD distributed memory computers. Journal of Parallel and Distributed Computing 31, 25–40 (1995)
Suhl, U.H., Suhl, L.M.: Computing sparse LU factorizations for large-scale linear programming bases. ORSA Journal on Computing 2, 325–335 (1990)
Tomlin, J.A.: Pivoting for size and sparsity in linear programming inversion routines. J. Inst. Maths. Applics. 10, 289–295 (1972)
Wunderling, R.: Paralleler und objektorientierter simplex, Tech. Report TR-96-09, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1996)
Wunderling, R.: Parallelizing the simplex algorithm. ILAY Workshop on Linear Algebra in Optimzation, Albi (April 1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hall, J., Huangfu, Q. (2012). A High Performance Dual Revised Simplex Solver. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31464-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31463-6
Online ISBN: 978-3-642-31464-3
eBook Packages: Computer ScienceComputer Science (R0)