Skip to main content

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

  • 2142 Accesses

Abstract

This paper presents runtime optimisation approaches for a real-time evacuation assistant. The pedestrian model used for the forecast is a modification of the centrifugal force model which operates in continuous space. It is combined with an event driven route choice algorithm which encompasses the local shortest path, the global shortest path and a combination with the quickest path. A naive implementation of this model has the complexity of O(N 2), N being the number of pedestrians. In the first step of the optimisation the complexity is reduced to O(N) using special neighbourhood lists like Verlet-List or Linked-Cell commonly used in molecular dynamics. The next step in this optimisation process is parallelisation on a multicore system. The Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) application programming interfaces are used to this extend. The simulation is performed on the Juropa cluster installed at the Jülich Supercomputing Centre. The speedup factors obtained are ~10 for the linked-cells, ~4 for 8 threads and ~3 for the parallelisation on 5 nodes using a static domain decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Juropa-JSC - HPC-FF (August 2009), http://www.fz-juelich.de/portal/EN/Research/InformationTechnology/Supercomputer/JUROPA.html

  2. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids, vol. 18. Oxford University Press (1989)

    Google Scholar 

  3. Baiardi, F., Bonotti, A., Ferrucci, L., Ricci, L., Mori, P.: Load balancing by domain decomposition: the bounded neighbour approach. In: Proc. of 17th European Simulation Multiconference, pp. 9–11 (2003)

    Google Scholar 

  4. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transportation Research Part B 35, 293–312 (2001)

    Article  Google Scholar 

  5. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal force model for pedestrian dynamics. Physical Review E 82, 046111 (2010)

    Article  Google Scholar 

  6. Galea, E.R., Gwynne, S., Lawrence, P., Filippidis, L., Blackspields, D., Cooney, D.: buildingEXODUS V 4.0 - User Guide and Technical Manual (2004)

    Google Scholar 

  7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience 22(6), 702–719 (2010)

    Google Scholar 

  8. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications, 1st edn. Springer Publishing Company, Incorporated (2007)

    Google Scholar 

  9. Hanxleden, R.V., Clark, T.W., Clark, T.W., Hanxleden, R., Mccammon, J.A., Scott, L.R.: Parallelizing molecular dynamics using spatial decomposition. In: Scalable High Performance Computing Conference, pp. 95–102. IEEE Computer Society Press (1993)

    Google Scholar 

  10. Hegarty, D., Kechadi, M., Dawson, K.: Dynamic Domain Decomposition and Load Balancing for Parallel Simulations of Long-Chained Molecules. In: Waśniewski, J., Madsen, K., Dongarra, J. (eds.) PARA 1995. LNCS, vol. 1041, pp. 303–312. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  12. Holl, S., Seyfried, A.: Hermes - an Evacuation Assistant for Mass Events. inSiDe 7(1), 60–61 (2009), http://inside.hlrs.de/pdfs/inSiDE_spring2009.pdf

    Google Scholar 

  13. Janak, J., Pattnaik, P.: Protein calculations on parallel processors. ii. parallel algorithm for the forces and molecular dynamics. Journal of Computational Chemistry 13(9), 1098–1102 (1992)

    Article  Google Scholar 

  14. Kemloh Wagoum, A.U., Seyfried, A., Holl, S.: Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation. Advances in Complex Systems 15(3) (2012)

    Google Scholar 

  15. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    Article  MATH  Google Scholar 

  16. Molnár, P.: Modellierung und Simulation der Dynamik von Fußgängerströmen. Dissertation, Universität Stuttgart (1995)

    Google Scholar 

  17. Richmond, P., Romano, D.: A High Performance Framework For Agent Based Pedestrian Dynamics On GPU Hardware. In: Proceedings of EUROSIS ESM 2008 (European Simulation and Modelling) (October 2008)

    Google Scholar 

  18. Pettré, J., De Heras Ciechomski, P., Maïm, J., Yersin, B., Laumond, J.P., Thalmann, D.: Real-time navigating crowds: scalable simulation and rendering: Research articles. Comput. Animat. Virtual Worlds 17, 445–455 (2006)

    Article  Google Scholar 

  19. Plimpton, S., Hendrickson, B.: Parallel molecular dynamics algorithms for simulation of molecular systems. In: Mattson, T.G. (ed.) Parallel Computing in Computational Chemistry, pp. 114–136 (1995)

    Google Scholar 

  20. Quinn, M.J., Metoyer, R.A., Hunter-zaworski, K.: Parallel implementation of the social forces model. In: Proceedings of the Second International Conference in Pedestrian and Evacuation Dynamics, pp. 63–74 (2003)

    Google Scholar 

  21. Reynolds, C.: Big fast crowds on PS3. In: Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames (2006)

    Google Scholar 

  22. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Encyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer, Heidelberg (2009)

    Google Scholar 

  23. Seyfried, A., Chraibi, M., Mehlich, J., Schadschneider, A.: Runtime Optimization of Force Based Models within the Hermes Project. In: Pedestrian and Evacuation Dynamics 2010(2010)

    Google Scholar 

  24. Steffen, B., Kemloh Wagoum, A.U., Chraibi, M., Seyfried, A.: Parallel real time computation of large scale pedestrian evacuations. In: Ivanyi, P., Topping, B.H.V. (eds.) The Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, p. 95. Civil-Comp Press, S (2011) 978-1-905088-44-7

    Google Scholar 

  25. Sutmann, G., Stegailov, V.: Optimization of neighbor list techniques in liquid matter simulations. Journal of Molecular Liquids 125(2-3), 197–203 (2006)

    Article  Google Scholar 

  26. Thompson, P.A.: Developing new techniques for modelling crowd movement. Phd thesis, University of Edinburgh (1994)

    Google Scholar 

  27. Wang, S., Armstrong, M.P.: A quadtree approach to domain decomposition for spatial interpolation in grid computing environments. Parallel Comput. 29, 1481–1504 (2003)

    Article  Google Scholar 

  28. Yu, W.J., Chen, R., Dong, L., Dai, S.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72(2), 026112 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kemloh Wagoum, A.U., Steffen, B., Seyfried, A. (2012). Runtime Optimisation Approaches for a Real-Time Evacuation Assistant. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics