Skip to main content

GPU Acceleration of the Matrix-Free Interior Point Method

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

  • 2314 Accesses

Abstract

The matrix-free technique is an iterative approach to interior point methods (IPM), so named because both the solution procedure and the computation of an appropriate preconditioner require only the results of the operations Ax and A T y, where A is the matrix of constraint coefficients. This paper demonstrates its overwhelmingly superior performance on two classes of linear programming (LP) problems relative to both the simplex method and to IPM with equations solved directly. It is shown that the reliance of this technique on sparse matrix-vector operations enables further, significant performance gains from the use of a GPU, and from multi-core processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Jeiroudi, G., Gondzio, J., Hall, J.: Preconditioning indefinite systems in interior point methods for large scale linear optimization. Optimization Methods and Software 23(3), 345–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Tech. Rep. NVR-2008-004, NVIDIA Corporation (2008)

    Google Scholar 

  3. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Computational Optimization and Applications 28, 149–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 115–126. ACM (2010)

    Google Scholar 

  5. Gondzio, J.: Matrix-free interior point method. Computational Optimization and Applications, published online October 14 (2010), doi:10.1007/s10589-010-9361-3

    Google Scholar 

  6. Gondzio, J.: Interior point methods 25 years later. European Journal of Operational Research, published online October 8 (2011), doi:10.1016/j.ejor.2011.09.017

    Google Scholar 

  7. Gruca, J., WiesÅ‚aw, L., Å»ukowski, M., Kiesel, N., Wieczorek, W., Schmid, C., Weinfurter, H.: Nonclassicality thresholds for multiqubit states: Numerical analysis. Physical Review A 82 (2010)

    Google Scholar 

  8. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand 49, 409–436 (1952)

    MathSciNet  MATH  Google Scholar 

  9. Karmarkar, N.K.: A new polynomial–time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison of techniques for the assignment of facilities to locations. Operations Research 16, 150–173 (1968)

    Article  Google Scholar 

  11. Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra and its Applications 394, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vázquez, F., Ortega, G., Fernández, J., Garzón, E.: Improving the performance of the sparse matrix vector product with GPUs. In: 2010 10th IEEE Conference on Computer and Information Technology (CIT 2010), pp. 1146–1151 (2010)

    Google Scholar 

  13. Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., Shringapure, A.: On the limits of GPU acceleration. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism. USENIX Association (2010)

    Google Scholar 

  14. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, E., Gondzio, J., Hall, J. (2012). GPU Acceleration of the Matrix-Free Interior Point Method. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics