Skip to main content

Meta-model Assisted Evolutionary Optimization of Cellular Automata: An Application to the SCIARA Model

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7204))

  • 1748 Accesses

Abstract

The automatic optimization of Cellular Automata (CA) models often requires a large number of time-consuming simulations before an acceptable solution can be found. As a result, CA optimization processes may involve significant computational resources. In this paper we investigate the possibility of speeding up a CA calibration through the approach of meta-model assisted search, which is widely used in many fields. The adopted technique relies on inexpensive surrogate functions able to approximate the fitness corresponding to the CA simulations. The calibration exercise presented here refers to SCIARA, a CA for the simulation of lava flows. According to the preliminary results, the use of meta-models enables to achieve a significant gain in computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16, 259–271 (1999)

    Article  Google Scholar 

  2. Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An Evolutionary Approach for Modelling Lava Flows Through Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Blecic, I., Cecchini, A., Trunfio, G.A.: A Comparison of Evolutionary Algorithms for Automatic Calibration of Constrained Cellular Automata. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part I. LNCS, vol. 6016, pp. 166–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Crisci, G.M., Rongo, R., Gregorio, S.D., Spataro, W.: The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. Journal of Volcanology and Geothermal Research 132, 253–267 (2004)

    Article  Google Scholar 

  5. Spataro, W., Avolio, M.V., Lupiano, V., Trunfio, G.A., Rongo, R., D’Ambrosio, D.: The latest release of the lava flows simulation model sciara: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. Procedia CS 1, 17–26 (2010)

    Article  Google Scholar 

  6. Willmes, L., Bäck, T., Jin, Y., Sendhoff, B.: Comparing neural networks and kriging for fitness approximation in evolutionary optimization. In: IEEE Congress on Evolutionary Computation, vol. (1), pp. 663–670 (2003)

    Google Scholar 

  7. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9, 3–12 (2005)

    Article  Google Scholar 

  8. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: IEEE International Conference on Neural Networks, pp. 586–591 (1993)

    Google Scholar 

  9. Morgan, N., Bourlard, H.: Advances in neural information processing systems 2, pp. 630–637. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  10. Nadaraya, E.: On estimating regression. Theory of Probability and Its Applications 9 (1964)

    Google Scholar 

  11. Watson, G.: Smooth regression analysis. Sankhya Series A, 359–372 (1969)

    Google Scholar 

  12. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural Networks 2, 568–576 (1991)

    Article  Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional (1989)

    Google Scholar 

  14. Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated n-dimensional landscapes. International Journal of Knowledge-based Intelligent Engineering Systems 4, 172–183 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Ambrosio, D., Rongo, R., Spataro, W., Trunfio, G.A. (2012). Meta-model Assisted Evolutionary Optimization of Cellular Automata: An Application to the SCIARA Model. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics