Skip to main content

Efficient Cryptography Technique on Perturbed Data in Distributed Environment

  • Conference paper
Advances in Computing and Information Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 176))

  • 2003 Accesses

Abstract

Data mining is a method through which we can search for a large pattern in huge database system. Now with the increasing growth of technology, the data requirements and amount of data will drastically increasing. Therefore, the data mining uses new methods for pattern matching which can be used for decision making. The organizations are stores data in bulk. Therefore, when a particular query is given by user, the amount of important or secure data can also be revealed as an answer of a query. This can harm to reputation of an organization. Therefore, privacy can concern to the above issue that not reveals any such kind of information about data provider and vice versa. Therefore, data needs to be modified without losing the data integrity. This paper outlines a method that achieve confidentiality from client and owner side which relatively less size of cipher text through mediator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Privacy Preserving Data Mining. In: The Proceedings of the ACM SIGMOD Conference (2000)

    Google Scholar 

  2. Muralidhar, K., Sarathi, R.: A General additive data perturbation method for data base security. Journal of Management Science 45(10), 1399–1415 (2002)

    Article  Google Scholar 

  3. Agrawal, D., Aggarwal, C.C.: On the Design and Quantification of Privacy Preserving Data mining algorithms. In: ACM PODS Conference (2002)

    Google Scholar 

  4. Muralidhar, K., Sarathy, R.: Data Shuffling- a new masking approach for numerical data. Management Science (forthcoming 2006)

    Google Scholar 

  5. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proc. of SIGKDD 2002, Edmonton, Alberta, Canada (2002)

    Google Scholar 

  6. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Yu, H., Vaidya, J., Jiang, X.: Privacy-Preserving SVM Classification on Vertically Partitioned Data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Agarwal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of the 20th Symposium on Principles of Database Systems, Santabarbara, California, USA (May 2001)

    Google Scholar 

  9. Karandikar, P., Deshpande, S.: Preserving Privacy in Data Mining using Data Distortion Approach. International Journal of Computer Engineering Science 1(2) (2011) ISSN: 2250-3439

    Google Scholar 

  10. Ravi Kumar, G., Ramachandra, G.A., Sunitha, G.: An Evolutionary Algorithm for Mining Association Rules Using Boolean Approach. International Journal of Computer Engineering Science 1(3) (2011) ISSN: 2250-3439

    Google Scholar 

  11. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 2002), Madison, pp. 24–31 (June 2002)

    Google Scholar 

  12. Muralidhar, K., Sarathy, R., Parsa, R.A.: A general additive perturbation method for database security. Management Science 45(10), 1399–1415 (1999)

    Article  Google Scholar 

  13. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proc. of ACM SIGMOD (2003)

    Google Scholar 

  14. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2000)

    Google Scholar 

  15. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proc. of 3rd IEEE Int. Conf. on Data Mining, Washington, DC, USA, pp. 99–106 (2003)

    Google Scholar 

  16. Muralidhar, K., Parsa, R., Sarathy, R.: A general additive data perturbation method for database security. Management Science 19, 1399–1415 (1999)

    Article  Google Scholar 

  17. Pinkas, B.: Cryptographic techniques for privacy preserving data mining. SIGKDD Explorations, 12–19 (2002)

    Google Scholar 

  18. Evfimievski, A.: Randomization in privacy preserving data mining. ACM SIGKDD Explorations Newsletter 4, 43–48 (2002)

    Article  Google Scholar 

  19. Vaidya, J., Clifton, C.: Privacy-Preserving Data Mining: Why, How and When. IEEE Security and Privacy 2, 19–27 (2004)

    Article  Google Scholar 

  20. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. SIGKDD Explor. News., 28–34 (2002)

    Google Scholar 

  21. Weiss, G.M.: Data Mining in Telecommunications. In: Data Mining and Knowledge Discovery Handbook, A Complete Guide for Practitioners and Researchers, pp. 1189–1201. Kluwer Academic Publishers (2005)

    Google Scholar 

  22. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida, November 19-22, pp. 99–106 (2003)

    Google Scholar 

  23. Muralidhar, K., Parsa, R., Sarathy, R.: A General Additive Data Perturbation Method for database Security. Management, 1399–1415 (1999)

    Google Scholar 

  24. Liu, L., Kantarcioglu, M., Thuraisingham, B.: The applicability of the perturbation based privacypreserving data mining for real-world data. Data & Knowledge Engineering 65, 5–21 (2008)

    Article  Google Scholar 

  25. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (July 2002)

    Google Scholar 

  26. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26 (2002)

    Google Scholar 

  28. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proc. of Intl. Conf. on Data Mining, ICDM (2003)

    Google Scholar 

  29. Kamakshi, P., VinayaBabu, A.: Preserving Privacy and Sharing the Data in Distributed Environment using Cryptographic Technique on Perturbed data. Journal of Computing 2(4) (April 2010) ISSN 2151-9617

    Google Scholar 

  30. Agarwal, R., Srikant, R.: Privacy preserving data mining. In: Procseedings of the 19th ACM SIGMOD Conference on Management of Data, Dallas, Texas, USA (May 2000)

    Google Scholar 

  31. Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, Oakland, pp. 45–57 (May 2002)

    Google Scholar 

  32. Jothimani, K., Antony SelvadossThanmani, S.: MS: Multiple Segments with Combinatorial Approach for Mining Frequent Item sets Over Data Streams. International Journal of Computer Engineering Science 2(2) (2012) ISSN : 2250-3439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goswami, N., Chauhan, T., Doshi, N. (2012). Efficient Cryptography Technique on Perturbed Data in Distributed Environment. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31513-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31513-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31512-1

  • Online ISBN: 978-3-642-31513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics