Skip to main content

Abstract

The Maximum Parsimony (MP) problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the total number of genetic transformations. In this paper we propose a carefully devised simulated annealing implementation, called SAMPARS (Simulated Annealing for Maximum PARSimony), for finding near-optimal solutions for the MP problem. Different possibilities for its key components and input parameter values were carefully analyzed and tunned in order to find the combination of them offering the best quality solutions to the problem at a reasonable computational effort. Its performance is investigated through extensive experimentation over well known benchmark instances showing that our SAMPARS algorithm is able to improve some previous best-known solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E.H.L., Van Laarhoven, P.J.M.: Statistical cooling: A general approach to combinatorial optimization problems. Philips Journal of Research 40, 193–226 (1985)

    MathSciNet  Google Scholar 

  2. Abramson, D., Krishnamoorthy, M., Dang, H.: Simulated annealing cooling schedules for the school timetabling problem. Asia-Pacific Journal of Operational Research 16(1), 1–22 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Allen, B.J., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5(1), 1–15 (2001)

    Article  MathSciNet  Google Scholar 

  4. Andreatta, A., Ribeiro, C.C.: Heuristics for the phylogeny problem. Journal of Heuristics 8(4), 429–447 (2002)

    Article  MATH  Google Scholar 

  5. Barker, D.: LVB: parsimony and simulated annealing in the search for phylogenetic trees. Bioinformatics 20(2), 274–275 (2003)

    Article  MathSciNet  Google Scholar 

  6. Barker, D.: LVB homepage (2012), http://biology.st-andrews.ac.uk/cegg/lvb.aspx

  7. Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis. models and estimation procedures. The American Journal of Human Genetics 19(3,pt 1), 233–257 (1967)

    Google Scholar 

  8. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design approach to automatic test generation. IEEE Software 13(5), 83–88 (1996)

    Article  Google Scholar 

  9. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 58, 121–167 (2004)

    MathSciNet  Google Scholar 

  10. de Landgraaf, W.A., Eiben, A.E., Nannen, V.: Parameter calibration using meta-algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE Press (2007)

    Google Scholar 

  11. Edwards, A.W.F., Cavalli-Sforza, L.L.: The reconstruction of evolution. Heredity 18, 553 (1963)

    Google Scholar 

  12. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17(6), 368–376 (1981)

    Article  Google Scholar 

  13. Fitch, W.M., Margoliash, E.: A method for estimating the number of invariant amino acid coding positions in a gene using cytochrome c as a model case. Biochemical Genetics 1(1), 65–71 (1967)

    Article  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-Complete. SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goëffon, A.: Nouvelles heuristiques de voisinage et mémétiques pour le problème maximum de parcimonie. Ph.D. thesis, LERIA, Université d’Angers (2006)

    Google Scholar 

  16. Gunawan, A., Lau, H.C., Lindawati: Fine-tuning algorithm parameters using the design of experiments. LNCS, vol. 6683, pp. 131–145 (2011)

    Google Scholar 

  17. Gusfield, D.: Algorithms on strings, trees, and sequences: Computer science and computational biology, 1st edn. Cambridge University Press (1997)

    Google Scholar 

  18. Hendy, M.D., Penny, D.: Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences 59(2), 277–290 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hennig, W.: Phylogenetic systematics. Phylogeny. University of Illinois Press, Urbana (1966)

    Google Scholar 

  20. Hillis, D.M., Moritz, C., Mable, B.K.: Molecular systematics, 2nd edn. Sinauer Associates Inc., Sunderland (1996)

    Google Scholar 

  21. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; part I, graph partitioning. Operations Research 37(6), 865–892 (1989)

    Article  MATH  Google Scholar 

  22. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; part II, graph coloring and number partitioning. Operations Research 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  23. Lü, Z., Hao, J.K., Glover, F.: Neighborhood analysis: A case study on curriculum-based course timetabling. Journal of Heuristics 17(2) (2011)

    Google Scholar 

  24. Penny, D., Foulds, L.R., Hendy, M.D.: Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297, 197–200 (1982)

    Article  Google Scholar 

  25. Ribeiro, C.C., Vianna, D.S.: A genetic algorithm for the phylogeny problem using an optimized crossover strategy based on path-relinking. In: Proceedings of the II Workshop Brasileiro de Bioinformática, Macaé, Brazil, pp. 97–102 (2003)

    Google Scholar 

  26. Ribeiro, C.C., Vianna, D.S.: A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational Research 12(3), 325–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ribeiro, C.C., Vianna, D.S.: A hybrid genetic algorithm for the phylogeny problem using path-relinking as a progressive crossover strategy. International Transactions in Operational Research 16(5), 641–657 (2009)

    Article  Google Scholar 

  28. Richer, J.-M., Goëffon, A., Hao, J.-K.: A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 164–175. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Robinson, D.F.: Comparison of labeled trees with valency three. Journal of Combinatorial Theory, Series B 11(2), 105–119 (1971)

    Article  MathSciNet  Google Scholar 

  30. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Computers & Operations Research 35(10), 3331–3346 (2008)

    Article  MATH  Google Scholar 

  31. Rodriguez-Tello, E., Torres-Jimenez, J.: Memetic Algorithms for Constructing Binary Covering Arrays of Strength Three. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975, pp. 86–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  33. Skourikhine, A.: Phylogenetic tree reconstruction using self-adaptive genetic algorithm. In: Proceedings of the IEEE International Symposium on Bio-Informatics and Biomedical Engineering, Arlington, VA, USA, pp. 129–134 (2000)

    Google Scholar 

  34. Sober, E.: The nature of selection: Evolutionary theory in philosophical focus. University Of Chicago Press (1993)

    Google Scholar 

  35. Sridhar, S., Lam, F., Blelloch, G.E., Ravi, R., Schwartz, R.: Direct maximum parsimony phylogeny reconstruction from genotype data. BMC Bioinformatics 8(472) (2007)

    Google Scholar 

  36. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogeny reconstruction. In: Molecular Systematics, 2nd edn., ch. 11, pp. 411–501. Sinauer Associates, Inc., Sunderland (1996)

    Google Scholar 

  37. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing: Theory and applications. Kluwer Academic Publishers (1988)

    Google Scholar 

  38. Vazquez-Ortiz, K.E.: Metaheurísticas para la resolución del problema de máxima parsimonia. Master’s thesis, LTI, Cinvestav - Tamaulipas, Cd. Vitoria, Tamps. Mexico (2011)

    Google Scholar 

  39. Waterman, M.S., Smith, T.F.: On the similarity of dendrograms. Journal of Theoretical Biology 73(4), 784–800 (1978)

    Article  MathSciNet  Google Scholar 

  40. Xiong, J.: Essential Bioinformatics, 1st edn. Cambridge University Press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Richer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richer, JM., Rodriguez-Tello, E., Vazquez-Ortiz, K.E. (2013). Maximum Parsimony Phylogenetic Inference Using Simulated Annealing. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics