Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 175))

Abstract

Topology optimization is used to find a preliminary structural configuration that meets a predefined criterion. It involves optimizing both the external boundary and the distribution of the internal material within a structure. Usually, counters are used a posteriori to the topology optimization to further adapt the shape of the topology according to manufacturing needs. Here we suggest optimizing topologies by evolving counters. We consider both outer and inner counters to allow for holes in the structure. Due to the difficulty of defining a reliable measure for the differences among shapes, little research attention has been focused on simultaneously finding diverse sets of optimal topologies. Here, niching is implemented within a suggested evolutionary algorithm in order to find diverse topologies. The niching is then embedded within the algorithm through the use of our recently introduced partitioning algorithm. For this algorithm to be used, the topologies are represented as functions. Two examples are given to demonstrate the approach. These examples show that the algorithm evolves a set of diverse optimal topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, G., Goldvard, A., Salomon, S.: Partitioning Algorithms. Technical report No. br352012, http://brd.braude.ac.il/~gideon

  2. Conceio, A.: A hierarchical genetic algorithm with age structure for multimodal optimal design of hybrid composites. Structural Multidisciplinary Optimization 31, 280–294 (2006)

    Article  Google Scholar 

  3. Erlbaum, L.: Conference on Genetic Algorithm, pp. 41–49. Associates Inc., Hillsdale (1987)

    Google Scholar 

  4. Glover, F.: Tabu search part I. ORSA Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  5. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley, Massachusetts (1989)

    MATH  Google Scholar 

  6. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International

    Google Scholar 

  7. Hadar, J., Rusell, W.R.: Rules for Ordering Uncertain Prospects. American Economic Review 59, 25–34 (1969)

    Google Scholar 

  8. Holland, J.H.: Adaptation in neural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L. (ed.) Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  10. Jahn, J.: Vector Optimization, Theory, Applications and Extensions, 2nd edn. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  11. Jensen, E.D.: Topological structural design using genetic algorithms, Phd. Dissertation, Purdue University, Lafayette (1992)

    Google Scholar 

  12. Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)

    Article  Google Scholar 

  13. Li, J.-P., Li, X.-D., Wood, A.: Species Based Evolutionary Algorithms for Multimodal Optimization. In: A Brief Review, WCCI 2010 IEEE (2010)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE Int.Conf. on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  15. Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and structural design: a survey of the state of the art. Computers and Structures 83(23-24), 1943–1978 (2005)

    Article  Google Scholar 

  16. Kim, I.Y., de Weck, O.L.: Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Structural and Multidisciplinary Optimization 29(6), 445–456 (2005)

    Article  Google Scholar 

  17. Kirk Martini, P.E.: Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks. Journal of Structural Engineering 137(11), 1332–1339 (2011)

    Article  Google Scholar 

  18. Mahfoud, S.W.: Crowding and preselection revisited. In: Bnner, R.M., Manderick, B. (eds.) Proceedings of the Second International Conference on Parallel Problem Solving from Nature - PPSN 2011, vol. 36, pp. 27–36. Elsevier Science Publishers (1992)

    Google Scholar 

  19. Mengshoel, O.J., Goldberg, D.E.: The Crowding Approach to Niching in Genetic Algorithm. Evolutionary Computation 16(3), 315–354 (2008)

    Article  Google Scholar 

  20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution, Stuttgart. Fommann-Holzbook (1973)

    Google Scholar 

  21. Sandgren, E., Jensen, E.D., Welton, J.: Topological design of structural components using genetic optimization methods. In: Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 31–43 (1990)

    Google Scholar 

  22. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Disburdening the Species Conservation Evolutionary Algorithm of Arguing with Radii. In: GECCO 2007, pp. 1420–1427 (2007)

    Google Scholar 

  23. Wang, S.Y., Tai, K.: Graph representation for structural topology optimization using genetic algorithms. Computers and Structures 82(2021), 1609–1622 (2004)

    Article  MathSciNet  Google Scholar 

  24. Wang, S.Y., Tai, K.: Structural topology design of optimization using genetic algorithm with a bit-array representation. Computer Methods in Applied Mechanics and Engineering 194(3638), 3749–3770 (2005)

    Article  MATH  Google Scholar 

  25. Woon, S.Y., Tong, L., Osvaldo, O.M., Steven, G.P.: Effective optimization of continuum topologies through a multi-GA system. Computer Methods in Applied Mechanics and Engineering 194(3033), 3416–3437 (2005)

    Article  MATH  Google Scholar 

  26. Li, X.: Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004); Fommann-Holzbook 1973

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Avigad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avigad, G., Matalon Eisenstadt, E., Salomon, S., Gadelha Guimar, F. (2013). Evolution of Contours for Topology Optimization. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics