Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 175))

Abstract

Extremal Optimisation (EO) is a recent nature-inspired meta-heuristic whose search method is especially suitable to solve combinatorial optimisation problems. This paper presents the implementation of a multi-objective version of EO to solve the real-world Radio Frequency IDentification (RFID) antenna design problem, which must maximise efficiency and minimise resonant frequency. The approach we take produces novel modified meander line antenna designs. Another important contribution of this work is the incorporation of an inseparable fitness evaluation technique to perform the fitness evaluation of the components of solutions. This is due to the use of the NEC evaluation suite, which works as a black box process. When the results are compared with those generated by previous implementations based on Ant Colony Optimisation (ACO) and Differential Evolution (DE), it is evident that our approach is able to obtain competitive results, especially in the generation of antennas with high efficiency. These results indicate that our approach is able to perform well on this problem; however, these results can still be improved, as demonstrated through a manual local search process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from co-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 825–832 (1999)

    Google Scholar 

  2. Burke, G., Poggio, A., Logan, J., Rockway, J.: NEC - numerical electromagnetics code for antennas and scattering. In: Antennas and Propagation Society International Symposium, vol. 17, pp. 147–150 (1979)

    Google Scholar 

  3. Coello Coello, C.A., Dhaenens, C., Jourdan, L.: Multi-Objective Combinatorial Optimization: Problematic and Context. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 1–21. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  5. Finkenzeller, K.: RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication, 3rd edn. John Wiley & Sons (2010)

    Google Scholar 

  6. Galehdar, A., Thiel, D., O’Keefe, S., Kingsley, S.: Efficiency variations in electrically small, meander line RFID antennas. In: Antennas and Propagation Society International Symposium, pp. 2273–2276. IEEE (2007)

    Google Scholar 

  7. Landt, J.: The history of RFID. IEEE Potentials 24(4), 8–11 (2005)

    Article  Google Scholar 

  8. Lewis, A., Randall, M., Galehdar, A., Thiel, D., Weis, G.: Using Ant Colony Optimisation to Construct Meander-Line RFID Antennas. In: Lewis, A., Mostaghim, S., Randall, M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 189–217. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lewis, A., Weis, G., Randall, M., Galehdar, A., Thiel, D.: Optimising eficiency and gain of small meander line RFID antennas using ant colony system. In: Proceedings of the 11th Congress on Evolutionary Computation, pp. 1486–1492. IEEE Press (2009)

    Google Scholar 

  10. Marrocco, G.: Gain-optimized self-resonant meander line antennas for RFID applications. IEEE Antennas and Wireless Propagation Letters 2(1), 302–305 (2003)

    Article  Google Scholar 

  11. Montgomery, J., Randall, M., Lewis, A.: Differential evolution for RFID antenna design: a comparison with ant colony optimisation. In: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 673–680. ACM (2011)

    Google Scholar 

  12. Randall, M., Lewis, A., Galehdar, A., Thiel, D.: Using ant colony optimisation to improve the efficiency of small meander line RFID antennas. In: Proceedings of the 3rd International Conference on e-Science and Grid Computing, pp. 345–351. IEEE Computer Society (2007)

    Google Scholar 

  13. Weis, G., Lewis, A., Randall, M., Galehdar, A., Thiel, D.: Local search for ant colony system to improve the efficiency of small meander line RFID antennas. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1708–1713. IEEE (2008)

    Google Scholar 

  14. Weis, G., Lewis, A., Randall, M., Thiel, D.: Pheromone pre-seeding for the construction of RFID antenna structures using ACO. In: Proceedings of the 6th International Conference on e-Science, pp. 161–167. IEEE Computer Society, Brisbane (2010)

    Google Scholar 

  15. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology, ETH (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gómez-Meneses .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez-Meneses, P., Randall, M., Lewis, A. (2013). A Multi-Objective Extremal Optimisation Approach Applied to RFID Antenna Design. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics