Skip to main content

Fall Detection on Embedded Platform Using Kinect and Wireless Accelerometer

  • Conference paper
Computers Helping People with Special Needs (ICCHP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7383))

Included in the following conference series:

Abstract

In this paper we demonstrate how to accomplish reliable fall detection on a low-cost embedded platform. The detection is achieved by a fuzzy inference system using Kinect and a wearable motion-sensing device that consists of accelerometer and gyroscope. The foreground objects are detected using depth images obtained by Kinect, which is able to extract such images in a room that is dark to our eyes. The system has been implemented on the PandaBoard ES and runs in real-time. It permits unobtrusive fall detection as well as preserves privacy of the user. The experimental results indicate high effectiveness of fall detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: Annual Int. Conf. of the Engineering in Medicine and Biology Society, pp. 6388–6391 (2006)

    Google Scholar 

  2. Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  3. Cook, A., Hussey, S.: Assistive Technologies — Principles and Practice, Mosby, 2nd edn. (2002)

    Google Scholar 

  4. Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Expert Systems 24(5), 334–345 (2007)

    Article  Google Scholar 

  5. Degen, T., Jaeckel, H., Rufer, M., Wyss, S.: Speedy: A fall detector in a wrist watch. In: Proc. of IEEE Int. Symp. on Wearable Computers, pp. 184–187 (2003)

    Google Scholar 

  6. Heinrich, S., Rapp, K., Rissmann, U., Becker, C., König, H.H.: Cost of falls in old age: a systematic review. Osteoporosis International 21, 891–902 (2010)

    Article  Google Scholar 

  7. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jamsa, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait & Posture 28(2), 285–291 (2008)

    Article  Google Scholar 

  8. Kepski, M., Kwolek, B., Austvoll, I.: Fuzzy Inference-Based Reliable Fall Detection Using Kinect and Accelerometer. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 266–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Miaou, S.-G., Sung, P.-H., Huang, C.-Y.: A customized human fall detection system using omni-camera images and personal information. In: Distributed Diagnosis and Home Healthcare, pp. 39–42 (2006)

    Google Scholar 

  10. Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., Lundy, J.: Fall detection - principles and methods. In: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007)

    Google Scholar 

  11. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3D head tracking to detect falls of elderly people. In: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 6384–6387 (2006)

    Google Scholar 

  12. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and its Applications to Modeling and Control. IEEE Trans. on SMC 15(1), 116–132 (1985)

    MATH  Google Scholar 

  13. Yu, X.: Approaches and principles of fall detection for elderly and patient. In: 10th Int. Conf. on e-health Networking, Applications and Services, pp. 42–47 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kepski, M., Kwolek, B. (2012). Fall Detection on Embedded Platform Using Kinect and Wireless Accelerometer. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds) Computers Helping People with Special Needs. ICCHP 2012. Lecture Notes in Computer Science, vol 7383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31534-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31534-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31533-6

  • Online ISBN: 978-3-642-31534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics