Skip to main content

Multi-label Image Annotation Based on Neighbor Pair Correlation Chain

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

  • 6110 Accesses

Abstract

Image annotation plays an important role in content-based image understanding, various machine learning methods have been proposed to solve this problem. In this paper, label correlation is considered as an undirected bipartite graph, in which each label are correlated by some common hidden topics. As a result, given a label, random walk with restart on the graph supplies a most related label, repeating this precedure leads to a label chain, which keep each adjacent labels pair correlated as maximally as possible. We coordinate the labels chain with its respective classifier training on bottom feature, and guide a classifier chain to annotate an image. The experiment illustrates that our method outperform both the baseline and another popular method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR 2003, pp. 127–134. ACM, New York (2003)

    Chapter  Google Scholar 

  2. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Google Scholar 

  5. De Finetti, B.: Theory of Probability: A critical introductory treatment, vol. 2. Wiley (1990)

    Google Scholar 

  6. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Advances in Knowledge Discovery and Data Mining, pp. 22–30 (2004)

    Google Scholar 

  8. Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The iapr tc-12 benchmark-a new evaluation resource for visual information systems. In: International Workshop OntoImage, pp. 13–23 (2006)

    Google Scholar 

  9. He, J., Li, M., Zhang, H., Tong, H., Zhang, C.: Manifold-ranking based image retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 9–16. ACM (2004)

    Google Scholar 

  10. Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence & wordnet. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA, pp. 706–715. ACM, New York (2005)

    Chapter  Google Scholar 

  11. Liu, X., Shi, Z., Li, Z., Wang, X., Shi, Z.: Sorted label classifier chains for learning images with multi-label. In: Proceedings of the International Conference on Multimedia, pp. 951–954. ACM (2010)

    Google Scholar 

  12. Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: Proceedings of the Tenth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp. 653–658. ACM (2004)

    Google Scholar 

  13. Phan, X.H., Nguyen, C.T.: Gibbslda++: A c/c++ implementation of latent dirichlet allocation, lda (2007)

    Google Scholar 

  14. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Wang, C., Jing, F., Zhang, L., Zhang, H.J.: Content-based image annotation refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. IEEE (2007)

    Google Scholar 

  17. Zhi-ping, S., Hong, H., Qing-yong, L., Zhong-zhi, S., Chan-lun, D.: Texture spectrum descriptor based image retrieval. The Journal of Software 16(6), 1039–1045 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, G., Liu, X., Shi, Z. (2012). Multi-label Image Annotation Based on Neighbor Pair Correlation Chain. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics