Abstract
Image annotation plays an important role in content-based image understanding, various machine learning methods have been proposed to solve this problem. In this paper, label correlation is considered as an undirected bipartite graph, in which each label are correlated by some common hidden topics. As a result, given a label, random walk with restart on the graph supplies a most related label, repeating this precedure leads to a label chain, which keep each adjacent labels pair correlated as maximally as possible. We coordinate the labels chain with its respective classifier training on bottom feature, and guide a classifier chain to annotate an image. The experiment illustrates that our method outperform both the baseline and another popular method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR 2003, pp. 127–134. ACM, New York (2003)
Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)
De Finetti, B.: Theory of Probability: A critical introductory treatment, vol. 2. Wiley (1990)
Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Advances in Knowledge Discovery and Data Mining, pp. 22–30 (2004)
Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The iapr tc-12 benchmark-a new evaluation resource for visual information systems. In: International Workshop OntoImage, pp. 13–23 (2006)
He, J., Li, M., Zhang, H., Tong, H., Zhang, C.: Manifold-ranking based image retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 9–16. ACM (2004)
Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence & wordnet. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA, pp. 706–715. ACM, New York (2005)
Liu, X., Shi, Z., Li, Z., Wang, X., Shi, Z.: Sorted label classifier chains for learning images with multi-label. In: Proceedings of the International Conference on Multimedia, pp. 951–954. ACM (2010)
Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: Proceedings of the Tenth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp. 653–658. ACM (2004)
Phan, X.H., Nguyen, C.T.: Gibbslda++: A c/c++ implementation of latent dirichlet allocation, lda (2007)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009)
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)
Wang, C., Jing, F., Zhang, L., Zhang, H.J.: Content-based image annotation refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. IEEE (2007)
Zhi-ping, S., Hong, H., Qing-yong, L., Zhong-zhi, S., Chan-lun, D.: Texture spectrum descriptor based image retrieval. The Journal of Software 16(6), 1039–1045 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiang, G., Liu, X., Shi, Z. (2012). Multi-label Image Annotation Based on Neighbor Pair Correlation Chain. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-31537-4_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31536-7
Online ISBN: 978-3-642-31537-4
eBook Packages: Computer ScienceComputer Science (R0)