Skip to main content

Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

Abstract

Text Categorization (TC) has attracted the attention of the research community in the last decade. Algorithms like Support Vector Machines, Naïve Bayes or k Nearest Neighbors have been used with good performance, confirmed by several comparative studies. Recently, several ensemble classifiers were also introduced in TC. However, many of those can only provide a category for a given new sample. Instead, in this paper, we propose a methodology – MECAC – to build an ensemble of classifiers that has two advantages to other ensemble methods: 1) it can be run using parallel computing, saving processing time and 2) it can extract important statistics from the obtained clusters. It uses the mean co-association matrix to solve binary TC problems. Our experiments revealed that our framework performed, on average, 2.04% better than the best individual classifier on the tested datasets. These results were statistically validated for a significance level of 0.05 using the Friedman Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, Y., Pedersen, J.: A Comparative Study on Feature Selection in Text Categorization. In: ICML 1997, pp. 412–420 (1997)

    Google Scholar 

  2. Yang, Y., Liu, X.: A Re-Examination of Text Categorization Methods. In: 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 42–49 (1999)

    Google Scholar 

  3. Yang, Y.: An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval 1, 69–90 (1999)

    Article  Google Scholar 

  4. Colas, F., Brazdil, P.: Comparison of SVM and Some Older Classification Algorithms in Text Classification Tasks. In: Artificial Intelligence in Theory and Practice, pp. 169–178 (2006)

    Google Scholar 

  5. Cho, S., Lee, J.: Learning Neural Network Ensemble for Practical Text Classification. In: Liu, J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 1032–1036. Springer, Heidelberg (2003)

    Google Scholar 

  6. Bi, Y., Bell, D.A., Wang, H., Guo, G., Greer, K.: Combining Multiple Classifiers Using Dempster’s Rule of Combination for Text Categorization. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 127–138. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Zhang, T., Oles, F.: Text Categorization Based on Regularized Linear Classification Methods. Information Retrieval 4, 5–31 (2001)

    Article  MATH  Google Scholar 

  8. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning 52, 91–118 (2003)

    Article  MATH  Google Scholar 

  9. Bottcher, M., Hoppner, F., Spiliopoulou, M.: On Exploiting the Power of Time in Data Mining. SIGKDD Explor. Newsl. 10, 3–11 (2008)

    Article  Google Scholar 

  10. http://www.daviddlewis.com/resources/testcollections/reuters21578/

  11. Khan, A., Baharudin, B., Lee, L., Khan, K.: A Review of Machine Learning Algorithms for Text-Documents Classification. Journal of Advances in Information Technology 1 (2010)

    Google Scholar 

  12. Joachims, T.: A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. In: 14th International Conference on Machine Learning, ICML 1997, pp. 143–151 (1997)

    Google Scholar 

  13. Nardiello, P., Sebastiani, F., Sperduti, A.: Discretizing Continuous Attributes in AdaBoost for Text Categorization. Advances in Information Retrieval (2003)

    Google Scholar 

  14. Dunn, J.: Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics 4, 95–104

    Google Scholar 

  15. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  16. Meila, M.: Comparing clusterings–an information based distance. Journal of Multivariate Analysis 98, 873–895 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. R Development Core Team: R: A Language and Environment for Statistical Computing., Vienna, Austria (2005)

    Google Scholar 

  18. Salton, G., Allan, J., Buckley, C., Singhal, A.: Automatic analysis, theme generation, and summarization of machine-readable texts. Readings in Information Retrieval, 478–483 (1997)

    Google Scholar 

  19. Rogati, M., Yang, Y.: High-performing feature selection for text classification. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 659–661. ACM, McLean (2002)

    Google Scholar 

  20. Venables, W., Ripley, B.: Modern Applied Statistics with S, New York, USA (2002)

    Google Scholar 

  21. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011)

    Google Scholar 

  22. Hornik, K., Buchta, C., Zeileis, A.: Open-source machine learning: R meets Weka. Computational Statistics 24, 225–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  24. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20, 37–46 (1960)

    Article  Google Scholar 

  25. Iman, R., Davenport, J.: Approximations of the critical region of the Friedman statistic. Communications in Statistics 571–595 (1980)

    Google Scholar 

  26. Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, pp. 688–693 (2002)

    Google Scholar 

  27. Mendes-Moreira, J., Jorge, A.M., Soares, C., de Sousa, J.F.: Ensemble Learning: A Study on Different Variants of the Dynamic Selection Approach. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 191–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreira-Matias, L., Mendes-Moreira, J., Gama, J., Brazdil, P. (2012). Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics