Abstract
Nowadays, Web is characterized by a growing availability of multimedia data together with a strong need for integrating different media and modalities of interaction. Hence, one of the main challenges is to bring into the Web data thought and produced for different media, such as TV or press content. In this scenario, we focus on multimodal news aggregation retrieval and fusion. Multimodality, here, is intended as the capability of processing, gathering, manipulating, and organizing data from multiple media. In particular, we tackle two main issues: to extract relevant keywords to news and news aggregations, and to automatically associate suitable advertisements to aggregated data. To achieve the first goal, we propose a solution based on the adoption of extraction-based text summarization techniques; whereas to achieve the second goal, we developed a contextual advertising system that works on multimodal aggregated data. To assess the proposed solutions, we performed experiments on Italian news aggregations. Results show that, in both cases, the proposed solution performs better than the adopted baseline solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anagnostopoulos, A., Broder, A.Z., Gabrilovich, E., Josifovski, V., Riedel, L.: Just-in-time contextual advertising. In: CIKM 2007: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 331–340. ACM, New York (2007), doi: http://doi.acm.org/10.1145/1321440.1321488
Armano, G., Giuliani, A., Messina, A., Montagnuolo, M., Vargiu, E.: Experimenting text summarization on multimodal aggregation. In: Lai, C., Semeraro, G., Vargiu, E. (eds.) 5th International Workshop DART 2011, New Challenges on Information Retrieval and Filtering, CEUR Workshop Proceedings, vol. 771 (2011)
Armano, G., Giuliani, A., Vargiu, E.: Experimenting text summarization techniques for contextual advertising. In: IIR 2011: Proceedings of the 2nd Italian Information Retrieval (IIR) Workshop (2011)
Armano, G., Giuliani, A., Vargiu, E.: Semantic enrichment of contextual advertising by using concepts. In: International Conference on Knowledge Discovery and Information Retrieval (2011)
Armano, G., Giuliani, A., Vargiu, E.: Studying the impact of text summarization on contextual advertising. In: 8th International Workshop on Text-based Information Retrieval (2011)
Baxendale, P.: Machine-made index for technical literature - an experiment. IBM Journal of Research and Development 2, 354–361 (1958)
Brandow, R., Mitze, K., Rau, L.F.: Automatic condensation of electronic publications by sentence selection. Information Processing Management 31, 675–685 (1995)
Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 559–566. ACM, New York (2007), doi: http://doi.acm.org/10.1145/1277741.1277837
Broder, A.Z., Ciaramita, M., Fontoura, M., Gabrilovich, E., Josifovski, V., Metzler, D., Murdock, V., Plachouras, V.: To swing or not to swing: learning when (not) to advertise. In: Shanahan, J.G., Amer-Yahia, S., Manolescu, I., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.S., Chowdhury, A. (eds.) CIKM, pp. 1003–1012. ACM (2008)
Ciaramita, M., Murdock, V., Plachouras, V.: Online learning from click data for sponsored search. In: Proceeding of the 17th International Conference on World Wide Web, WWW 2008, pp. 227–236. ACM, New York (2008)
Ciaramita, M., Murdock, V., Plachouras, V.: Semantic associations for contextual advertising. Journal of Electronic Commerce Research 9(1), 1–15 (2008); Special Issue on Online Advertising and Sponsored Search
Das, D., Martins, A.F.: A survey on automatic text summarization. Tech. Rep. Literature Survey for the Language and Statistics II course at CMU (2007)
Deschacht, K., Moens, M.-F.: Finding the Best Picture: Cross-Media Retrieval of Content. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 539–546. Springer, Heidelberg (2008)
Edmundson, H.P.: New methods in automatic extracting. Journal of ACM 16, 264–285 (1969)
Kokar, M.: Formalizing classes of information fusion systems. Information Fusion 5(3), 189–202 (2004)
Koĺcz, A., Alspector, J.: Asymmetric missing-data problems: Overcoming the lack of negative data in preference ranking. Information Retrieval 5, 5–40 (2002)
Kolcz, A., Prabakarmurthi, V., Kalita, J.: Summarization as feature selection for text categorization. In: CIKM 2001: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 365–370. ACM, New York (2001)
Lacerda, A., Cristo, M., Gonçalves, M.A., Fan, W., Ziviani, N., Ribeiro-Neto, B.: Learning to advertise. In: SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–556. ACM, New York (2006), doi: doi.acm.org/10.1145/1148170.1148265
Laudy, C., Ganascia, J.-G.: Information fusion in a tv program recommendation system. In: 11th International Conference on Information Fusion 2008, pp. 1–8 (2008)
Li, X., Yan, J., Deng, Z., Ji, L., Fan, W., Zhang, B., Chen, Z.: A novel clustering-based RSS aggregator. In: Proc. of WWW 2007, pp. 1309–1310 (2007)
Liu, H., Singh, P.: Conceptnet: A practical commonsense reasoning tool-kit. BT Technology Journal 22, 211–226 (2004)
Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of Research and Development 2, 159–165 (1958)
Mahler, R.P.S.: Statistical Multisource-Multitarget Information Fusion. Artech House, Inc., Norwood (2007)
Mani, I.: Automatic summarization. John Benjamins, Amsterdam (2001)
Messina, A., Borgotallo, R., Dimino, G., Gnota, D.A., Boch, L.: Ants: A complete system for automatic news programme annotation based on multimodal analysis. In: Intl. Workshop on Image Analysis for Multimedia Interactive Services (2008)
Messina, A., Montagnuolo, M.: Multimodal aggregation and recommendation technologies applied to informative content distribution and retrieval. In: Soro, A., Vargiu, E., Armano, G., Paddeu, G. (eds.) Information Retrieval and Mining in Distributed Environments. SCI, vol. 324, pp. 213–232. Springer, Heidelberg (2010)
Messina, A., Montagnuolo, M.: Heterogeneous data co-clustering by pseudo-semantic affinity functions. In: Proc. of the 2nd Italian Information Retrieval Workshop, IIR (2011)
Murdock, V., Ciaramita, M., Plachouras, V.: A noisy-channel approach to contextual advertising. In: Proceedings of the 1st International Workshop on Data Mining and Audience Intelligence for Advertising, ADKDD 2007, pp. 21–27. ACM, New York (2007)
Nenkova, A.: Automatic text summarization of newswire: lessons learned from the document understanding conference. In: Proceedings of the 20th National Conference on Artificial Intelligence, vol. 3, pp. 1436–1441. AAAI Press (2005)
Nguyen, L.-D., Woon, K.-Y., Tan, A.-H.: A self-organizing neural model for multimedia information fusion. In: 11th International Conference on Information Fusion, pp. 1–7 (2008)
Radev, D.R.: A common theory of information fusion from multiple text sources step one: cross-document structure. In: Proceedings of the 1st SIGdial Workshop on Discourse and Dialogue, pp. 74–83. Association for Computational Linguistics, Morristown (2000)
Radev, D.R., Hovy, E., McKeown, K.: Introduction to the special issue on summarization. Computational Linguistic 28, 399–408 (2002)
Ribeiro-Neto, B., Cristo, M., Golgher, P.B., Silva de Moura, E.: Impedance coupling in content-targeted advertising. In: SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 496–503. ACM, New York (2005), doi: http://doi.acm.org/10.1145/1076034.1076119
Rocchio, J.: Relevance feedback in information retrieval. In: The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall (1971)
Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Book Company (1984)
Wu, Y., Chang, E.Y., Chang, K.C.-C., Smith, J.R.: Optimal multimodal fusion for multimedia data analysis. In: MULTIMEDIA 2004: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 572–579. ACM, New York (2004)
Xu, C., Wang, J., Lu, H., Zhang, Y.: A novel framework for semantic annotation and personalized retrieval of sports video. IEEE Trans. on Multimedia 10(3), 421–436 (2008)
Yih, W.t., Goodman, J., Carvalho, V.R.: Finding advertising keywords on web pages. In: WWW 2006: Proceedings of the 15th International Conference on World Wide Web, pp. 213–222. ACM, New York (2006),doi: http://doi.acm.org/10.1145/1135777.1135813
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Armano, G., Giuliani, A., Messina, A., Montagnuolo, M., Vargiu, E. (2013). Content-Based Keywords Extraction and Automatic Advertisement Associations to Multimodal News Aggregations. In: Lai, C., Semeraro, G., Vargiu, E. (eds) New Challenges in Distributed Information Filtering and Retrieval. Studies in Computational Intelligence, vol 439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31546-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-31546-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31545-9
Online ISBN: 978-3-642-31546-6
eBook Packages: EngineeringEngineering (R0)