Skip to main content

Motion Capture for Clinical Purposes, an Approach Using PrimeSense Sensors

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7378))

Included in the following conference series:

  • 1377 Accesses

Abstract

Virtual Reality (VR) is the computer recreation of simulated environments that create on the user a sense of physical presence on them. VR provides the advantages of being highly flexible and controllable, allowing experts to generate the optimal conditions for any given test and isolating any desired variables in the course of an experiment. An important characteristic of VR is that it allows interaction within the virtual world. Motion capture is one of the most popular technologies, because it contributes to creating in the subject the required sense of presence. There are several methods to incorporate these techniques into VR system, with the challenge of them not being too invasive. We propose a method using PrimeSense sensors and several well-known computer vision techniques to build a low-cost mocap system that has proven to be valid for clinical needs, in its application as a support therapy for Parkinson’s disease (PD) patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Transactions on Robotics and Automation 7(4), 489–499 (1991)

    Article  Google Scholar 

  2. Arias, P., Robles-García, V., Sanmartín, G., Flores, J., Cudeiro, J.: Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson’s Disease Patients. PLoS ONE 7(1), e30021, doi:10.1371/journal.pone.0030021

    Google Scholar 

  3. Bradski, G.R.: Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal, Q2 1998 (1998)

    Google Scholar 

  4. Zhang, C., Qiao, Y., Fallon, E., Xu, C.: An improved CamShift algorithm for target tracking in video surveillance

    Google Scholar 

  5. Xiangyu, W., Xiujuan, L.: The Study of Moving Target Tracking Based on Kalman-CamShift in the Video

    Google Scholar 

  6. Dae-Sik, J., Gye-Young, K., Choi-Hyung, I.: Kalman Filter incorporated model updating for real-time tracking. In: Proc. 1996 IEEE TENCON, Digital Signal Processing Applications, pp. 878–882 (1996)

    Google Scholar 

  7. Varona, J., Buades, J.M., Perales, F.: Hands and face tracking for VR applications. Computers & Graphics 29(2), 179–187 (2005)

    Article  Google Scholar 

  8. Manresa, C., Varona, J., Mas, R., Perales, F.: Hand tracking and Gesture Recognition for Human-Computer Interaction

    Google Scholar 

  9. Burrus, N.: Kinect Calibration, http://nicolas.burrus.name/index.php/Research/KinectCalibration

  10. Konolige, K., Mihelich, P.: Technical description of Kinect calibration, http://www.ros.org/wiki/kinect_calibration/technical

  11. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)

    MATH  Google Scholar 

  12. Cheng, Y.: Mean shift, mode seeking and clustering. IEEE Trans. Pattern Anal. Machine Intell. 17, 790–799 (1995)

    Article  Google Scholar 

  13. Hodges, L., Kooper, R., Orothbaum, B., Opddyke, D.: Virtual environments for treating the fear of heights. IEEE Computer, 28–84 (1995)

    Google Scholar 

  14. Carlin, A.S., Hoffman, H.G., Weghorst, S.: Virtual reality and tactile augmentation in the treatment of spider phobia: A case report. Behaviour Research and Therapy 35(2), 153–158 (1997)

    Article  Google Scholar 

  15. Pertaub, D.P., Slater, M., Barker, C.: An experiment on public speaking anxiety in response to three different types of virtual audience. Presence-Teleoperators and Virtual Environments 11(1), 68–78 (2002)

    Article  Google Scholar 

  16. Difede, J., Hoffman, H., Jaysinghe, N.: Innovative use of virtual reality technology in the treatment of PTSD in the aftermath of September 11. Psychiatric Services 53(9), 1083–1085 (2002)

    Article  Google Scholar 

  17. Granger, C.V., Hamilton, B.B., Sherwin, F.G.: Guide for the use of uniform data set for medical rehabilitation. Uniform Data System for Medical Rehabilitation. Buvalo General Hospital, New York

    Google Scholar 

  18. Bennett, K.M., Castiello, U.: Reach to grasp: changes with age. J. Gerontol. 49(1), 1–7 (1994)

    Google Scholar 

  19. Carnahan, H., Vandervoort, A.A., Swanson, L.R.: The influence of aging and target motion on the control of prehension. Exp. Aging. Res. 24(3), 289–306

    Google Scholar 

  20. Majsak, M.J., Kaminski, T., Gentile, A.M., Flanagan, J.R.: The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain 121(Pt 4), 755–766

    Google Scholar 

  21. Negrotti, A., Secchi, C., Gentilucci, M.: Effects of disease progression and L-dopa therapy on the control of reaching-grasping in Parkinson’s disease. Neuropsychologia 43(3), 450–459

    Google Scholar 

  22. Jeannerod, M.: Intersegmental coordination during reaching at natural visual objects. In: Long, J., Baddeley, A. (eds.) Attention and Performance IX, pp. 153–168. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  23. Microsoft Kinect for Windows, http://www.microsoft.com/en-us/kinectforwindows/

  24. ASUS Xtion PRO live, http://us.estore.asus.com/index.php?l=product_detail&p=4001

  25. Natural Point TrackIR 4: PRO, http://www.naturalpoint.com/trackir/02-products/product-TrackIR-4-PRO.html

  26. Neuroscience and Motor Control Group (Neurocom), http://www.udc.es/dep/medicina/neurocom.htm

  27. OpenCV. Open Source Computer Vision, http://opencv.willowgarage.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanmartín, G., Flores, J., Arias, P., Cudeiro, J., Méndez, R. (2012). Motion Capture for Clinical Purposes, an Approach Using PrimeSense Sensors. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds) Articulated Motion and Deformable Objects. AMDO 2012. Lecture Notes in Computer Science, vol 7378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31567-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31567-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31566-4

  • Online ISBN: 978-3-642-31567-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics