Skip to main content

Streaming and Communication Complexity of Clique Approximation

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We consider the classic clique (or, equivalently, the independent set) problem in two settings. In the streaming model, edges are given one by one in an adversarial order, and the algorithm aims to output a good approximation under space restrictions. In the communication complexity setting, two players, each holds a graph on n vertices, and they wish to use a limited amount of communication to distinguish between the cases when the union of the two graphs has a low or a high clique number. The settings are related in that the communication complexity gives a lower bound on the space complexity of streaming algorithms.

We give several results that illustrate different tradeoffs between clique separability and the required communication/space complexity under randomization. The main result is a lower bound of \(\Omega(\frac{n^2}{r^2\log^2{n}})\)-space for any r-approximate randomized streaming algorithm for maximum clique. A simple random sampling argument shows that this is tight up to a logarithmic factor. For the case when r = o(logn), we present another lower bound of \(\Omega(\frac{n^2}{r^4})\). In particular, it implies that any constant approximation randomized streaming algorithm requires Ω(n 2) space, even if the algorithm runs in exponential time. Finally, we give a third lower bound that holds for the extremal case of s − 1 vs. \(\mathcal{R}(s)-1\), where \(\mathcal{R}(s)\) is the s-th Ramsey number. This is the extremal setting of clique numbers that can be separated. The proofs involve some novel combinatorial structures and sophisticated combinatorial constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alon, N., Shapira, A.: A characterization of easily testable induced subgraphs. In: SODA 2004, pp. 942–951. SIAM (2004)

    Google Scholar 

  3. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions. Combinatorica 7(1), 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory. In: FOCS 1986, pp. 337–347. IEEE Computer Society (1986)

    Google Scholar 

  5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: SODA 2002, pp. 623–632 (2002)

    Google Scholar 

  6. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: KDD 2008, pp. 16–24 (2008)

    Google Scholar 

  7. Bollobás, B.: Complete subgraphs are elusive. Journal of Combinatorial Theory, Series B 21(1), 1–7 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordino, I., Donato, D., Gionis, A., Leonardi, S.: Mining Large Networks with Subgraph Counting. In: 8th IEEE International Conference on Data Mining, pp. 737–742. IEEE Computer Society (2008)

    Google Scholar 

  9. Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating Clustering Indexes in Data Streams. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 618–632. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. II. On completeness for W[1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P.: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53, 292–294 (1947)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio. Math. 2, 463–470 (1935)

    MathSciNet  Google Scholar 

  13. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math. 18(2), 219–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theoretical Computer Science 348(2), 207–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Mathematical Proceedings of the Cambridge Philosophical Society 77, 313–324 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming Algorithms for Independent Sets. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 641–652. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Indyk, P., Price, E.: K-median clustering, model-based compressive sensing, and sparse recovery for earth mover distance. In: STOC 2011, pp. 627–636 (2011)

    Google Scholar 

  20. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khot, S., Ponnuswami, A.K.: Better Inapproximability Results for maxClique, Chromatic Number and Min-3Lin-Deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Pr. (1997)

    Google Scholar 

  23. Losievskaja, E.: Approximation Algorithms for Independent Set Problems on Hypergraphs. PhD thesis. Reykjavik University (January 2010)

    Google Scholar 

  24. Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate Counting of Cycles in Streams. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 677–688. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Ruzsa, I., Szemerédi, E.: Triple systems with no six points carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, 939–945 (1976)

    Google Scholar 

  26. Yao, A.C.C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 1979, pp. 209–213. ACM (1979)

    Google Scholar 

  27. Zelke, M.: Intractability of min- and max-cut in streaming graphs. Inf. Process. Lett. 111(3), 145–150 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C. (2012). Streaming and Communication Complexity of Clique Approximation. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics