Skip to main content

Minimum Latency Submodular Cover

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We study the submodular ranking problem in the presence of metric costs. The input to the minimum latency submodular cover (MLSC ) problem consists of a metric (V,d) with source r ∈ V and m monotone submodular functions f 1, f 2, ..., f m : 2V → [0,1]. The goal is to find a path originating at r that minimizes the total cover time of all functions; the cover time of function f i is the smallest value t such that f i has value one for the vertices visited within distance t along the path. This generalizes many previously studied problems, such as submodular ranking [1] when the metric is uniform, and group Steiner tree [14] when m = 1 and f 1 is a coverage function. We give a polynomial time \(O(\log \frac{1}{\epsilon } \cdot \log^{2+\delta} |V|)\)-approximation algorithm for MLSC, where ε > 0 is the smallest non-zero marginal increase of any \(\{f_i\}_{i=1}^m\) and δ > 0 is any constant. This result is enabled by a simpler analysis of the submodular ranking algorithm from [1].

We also consider the stochastic submodular ranking problem where elements V have random instantiations, and obtain an adaptive algorithm with an O(log1/ ε) approximation ratio, which is best possible. This result also generalizes several previously studied stochastic problems, eg. adaptive set cover [15] and shared filter evaluation [24,23].

A full version of this extended abstract appears as [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azar, Y., Gamzu, I.: Ranking with submodular valuations. In: SODA 2011, pp. 1070–1079 (2011)

    Google Scholar 

  2. Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: STOC 2009, pp. 669–678 (2009)

    Google Scholar 

  3. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: SODA 2010, pp. 1539–1545 (2010)

    Google Scholar 

  4. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998)

    Article  MATH  Google Scholar 

  5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an n 1/4 approximation for densest k-subgraph. In: STOC 2010, pp. 201–210 (2010)

    Google Scholar 

  6. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. Journal of Combinatorial Optimization 9(3), 281–294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA 2000, pp. 106–115 (2000)

    Google Scholar 

  8. Chakrabarty, D., Swamy, C.: Facility Location with Client Latencies: Linear Programming Based Techniques for Minimum Latency Problems. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 92–103. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: FOCS 2003, pp. 36–45 (2003)

    Google Scholar 

  10. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the group steiner problem. Discrete Applied Mathematics 154(1), 15–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chekuri, C., Pál, M.: A recursive greedy algorithm for walks in directed graphs. In: FOCS 2005, pp. 245–253 (2005)

    Google Scholar 

  12. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairmen problem. ACM Transactions on Algorithms 3(4) (2007)

    Google Scholar 

  13. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goemans, M.X., Vondrák, J.: Stochastic Covering and Adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Golovin, D., Krause, A.: Adaptive submodularity: A new approach to active learning and stochastic optimization. In: COLT 2010, pp. 333–345 (2010)

    Google Scholar 

  17. Guillory, A., Bilmes, J.A.: Online submodular set cover, ranking, and repeated active learning. In: NIPS 2011 (2011)

    Google Scholar 

  18. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Gupta, A., Srinivasan, A.: An improved approximation ratio for the covering steiner problem. Theory of Computing 2(1), 53–64 (2006)

    Article  MathSciNet  Google Scholar 

  20. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC 2003, pp. 585–594 (2003)

    Google Scholar 

  21. Im, S., Nagarajan, V., van der Zwaan, R.: Minimum latency submodular cover. CoRR, abs/1110.2207 (2011)

    Google Scholar 

  22. Konjevod, G., Ravi, R., Srinivasan, A.: Approximation algorithms for the covering steiner problem. Random Struct. Algorithms 20(3), 465–482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms for shared filter evaluation in data stream systems. In: SIGMOD 2008, pp. 133–146 (2008)

    Google Scholar 

  24. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared expensive filters. In: PODS 2007, pp. 215–224 (2007)

    Google Scholar 

  25. Nagarajan, V.: Approximation Algorithms for Sequencing Problems. PhD thesis. Tepper School of Business, Carnegie Mellon University (2009)

    Google Scholar 

  26. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  27. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Im, S., Nagarajan, V., van der Zwaan, R. (2012). Minimum Latency Submodular Cover. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics