Skip to main content

Faster Algorithms for Privately Releasing Marginals

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

  • 2149 Accesses

Abstract

We study the problem of releasing k-way marginals of a database D ∈ ({0, 1}d)n, while preserving differential privacy. The answer to a k-way marginal query is the fraction of D’s records x ∈ {0, 1}d with a given value in each of a given set of up to k columns. Marginal queries enable a rich class of statistical analyses of a dataset, and designing efficient algorithms for privately releasing marginal queries has been identified as an important open problem in private data analysis (cf. Barak et. al., PODS ’07).

We give an algorithm that runs in time \(d^{O(\sqrt{k})}\) and releases a private summary capable of answering any k-way marginal query with at most ±.01 error on every query as long as \(n \geq d^{O(\sqrt{k})}\). To our knowledge, ours is the first algorithm capable of privately releasing marginal queries with non-trivial worst-case accuracy guarantees in time substantially smaller than the number of k-way marginal queries, which is d Θ(k) (for k ≪ d).

A full version of this paper appears on the authors’ websites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Libkin, L. (ed.) PODS, pp. 273–282. ACM (2007)

    Google Scholar 

  2. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Li, C. (ed.) PODS, pp. 128–138. ACM (2005)

    Google Scholar 

  3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Dwork, C. (ed.) STOC, pp. 609–618. ACM (2008)

    Google Scholar 

  4. Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.K.: Submodular functions are noise stable. In: Randall, D. (ed.) SODA, pp. 1586–1592. SIAM (2012)

    Google Scholar 

  5. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS, pp. 202–210. ACM (2003)

    Google Scholar 

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC 2009, pp. 381–390 (2009)

    Google Scholar 

  8. Dwork, C., Nissim, K.: Privacy-Preserving Datamining on Vertically Partitioned Databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)

    Google Scholar 

  9. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS, pp. 51–60. IEEE Computer Society (2010)

    Google Scholar 

  10. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: STOC 2011, pp. 803–812 (2011)

    Google Scholar 

  11. Gupta, A., Roth, A., Ullman, J.: Iterative Constructions and Private Data Release. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. CoRR abs/1012.4763 (2010)

    Google Scholar 

  13. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE Computer Society (2010)

    Google Scholar 

  14. Hardt, M., Rothblum, G.N., Servedio, R.A.: Private data release via learning thresholds. In: Randall, D. (ed.) SODA, pp. 168–187. SIAM (2012)

    Google Scholar 

  15. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klivans, A.R., Servedio, R.A.: Toward Attribute Efficient Learning of Decision Lists and Parities. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 224–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC 2010, pp. 765–774 (2010)

    Google Scholar 

  18. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity 18(2), 219–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ullman, J., Vadhan, S.: PCPs and the Hardness of Generating Private Synthetic Data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thaler, J., Ullman, J., Vadhan, S. (2012). Faster Algorithms for Privately Releasing Marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics