Abstract
We study the problem of releasing k-way marginals of a database D ∈ ({0, 1}d)n, while preserving differential privacy. The answer to a k-way marginal query is the fraction of D’s records x ∈ {0, 1}d with a given value in each of a given set of up to k columns. Marginal queries enable a rich class of statistical analyses of a dataset, and designing efficient algorithms for privately releasing marginal queries has been identified as an important open problem in private data analysis (cf. Barak et. al., PODS ’07).
We give an algorithm that runs in time \(d^{O(\sqrt{k})}\) and releases a private summary capable of answering any k-way marginal query with at most ±.01 error on every query as long as \(n \geq d^{O(\sqrt{k})}\). To our knowledge, ours is the first algorithm capable of privately releasing marginal queries with non-trivial worst-case accuracy guarantees in time substantially smaller than the number of k-way marginal queries, which is d Θ(k) (for k ≪ d).
A full version of this paper appears on the authors’ websites.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Libkin, L. (ed.) PODS, pp. 273–282. ACM (2007)
Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Li, C. (ed.) PODS, pp. 128–138. ACM (2005)
Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Dwork, C. (ed.) STOC, pp. 609–618. ACM (2008)
Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.K.: Submodular functions are noise stable. In: Randall, D. (ed.) SODA, pp. 1586–1592. SIAM (2012)
Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS, pp. 202–210. ACM (2003)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC 2009, pp. 381–390 (2009)
Dwork, C., Nissim, K.: Privacy-Preserving Datamining on Vertically Partitioned Databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)
Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS, pp. 51–60. IEEE Computer Society (2010)
Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: STOC 2011, pp. 803–812 (2011)
Gupta, A., Roth, A., Ullman, J.: Iterative Constructions and Private Data Release. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg (2012)
Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. CoRR abs/1012.4763 (2010)
Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE Computer Society (2010)
Hardt, M., Rothblum, G.N., Servedio, R.A.: Private data release via learning thresholds. In: Randall, D. (ed.) SODA, pp. 168–187. SIAM (2012)
Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)
Klivans, A.R., Servedio, R.A.: Toward Attribute Efficient Learning of Decision Lists and Parities. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 224–238. Springer, Heidelberg (2004)
Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC 2010, pp. 765–774 (2010)
Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity 18(2), 219–247 (2009)
Ullman, J., Vadhan, S.: PCPs and the Hardness of Generating Private Synthetic Data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thaler, J., Ullman, J., Vadhan, S. (2012). Faster Algorithms for Privately Releasing Marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_68
Download citation
DOI: https://doi.org/10.1007/978-3-642-31594-7_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31593-0
Online ISBN: 978-3-642-31594-7
eBook Packages: Computer ScienceComputer Science (R0)