Abstract
An important open question in Cryptography concerns the possibility of achieving secure protocols even in the presence of physical attacks. Here we focus on the case of proof systems where an adversary forces the honest player to re-use its randomness in different executions. In 2009, Deng, Goyal and Sahai [1] constructed a simultaneously resettable non-black-box zero-knowledge argument system that is secure against resetting provers and verifiers.
In this work we study the case of the black-box use of the code of the adversary and show a nearly simultaneously resettable black-box zero-knowledge proof systems under standard assumptions. Compared to [1], our protocol is a proof (rather then just argument) system, but requires that the resetting prover can reset the verifier up to a bounded number of times (which is unavoidable for black-box simulation), while the verifier can reset the prover an arbitrary polynomial number of times. The main contribution of our construction is that the round complexity is independent of the above bound. To achieve our result, we construct a constant-round nearly simultaneously resettable coin-flipping protocol that we believe is of independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: FOCS 2009, pp. 251–260 (2009)
Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC 2000, pp. 235–244. ACM (2000)
Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)
Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS 2001, pp. 116–125 (2001)
Dwork, C., Naor, M.,, S.: Concurrent zero-knowledge. In: STOC 1998, pp. 409–418. ACM (1998)
Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge Proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)
Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithmic rounds. In: STOC 2001, pp. 560–569. ACM (2001)
Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires \(\tilde{\Omega} (\log n)\) rounds. In: STOC 2001, pp. 570–579. ACM, USA (2001)
Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS 2002, pp. 366–375. IEEE Computer Society (2002)
Micciancio, D., Petrank, E.: Simulatable Commitments and Efficient Concurrent Zero-Knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 644–645. Springer, Heidelberg (2003)
Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency Preserving Transformations for Concurrent Non-Malleable Zero Knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)
Blundo, C., Persiano, G., Sadeghi, A.R., Visconti, I.: Improved Security Notions and Protocols for Non-Transferable Identification. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)
Deng, Y., Lin, D.: Instance-Dependent Verifiable Random Functions and Their Application to Simultaneous Resettability. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 148–168. Springer, Heidelberg (2007)
Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)
Crescenzo, G., Persiano, G., Visconti, I.: Improved Setup Assumptions for 3-Round Resettable Zero Knowledge. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 530–544. Springer, Heidelberg (2004)
Scafuro, A., Visconti, I.: On Round-Optimal Zero Knowledge in the Bare Public-Key Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 153–171. Springer, Heidelberg (2012)
Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable Statistical Zero Knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer, Heidelberg (2012)
Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293. IEEE Computer Society (2000)
Cho, C., Ostrovsky, R., Scafuro, A., Visconti, I.: Simultaneously Resettable Arguments of Knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 530–547. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baron, J., Ostrovsky, R., Visconti, I. (2012). Nearly Simultaneously Resettable Black-Box Zero Knowledge. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-31594-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31593-0
Online ISBN: 978-3-642-31594-7
eBook Packages: Computer ScienceComputer Science (R0)