Skip to main content

Extended Failed-Literal Preprocessing for Quantified Boolean Formulas

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2012 (SAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

  • 2353 Accesses

Abstract

~Building on recent work that adapts failed-literal analysis (FL) to Quantified Boolean Formulas (QBF), this paper introduces extended failed-literal analysis (EFL). FL and EFL are both preprocessing methods that apply a fast, but incomplete reasoning procedure to abstractions of the underlying QBF. EFL extends FL by remembering certain binary clauses that are implied by the same reasoning procedure as FL when it assumes one literal and that implies a second literal. This extension is almost free because the second literals are implied anyway during FL, but compared to analogous techniques for propositional satisfiability, its correctness involves some subtleties. For the first time, application of the universal pure literal rule is considered without also applying the existential pure literal rule. It is shown that using both pure literal rules in EFL is unsound. A modified reasoning procedure for QBF, called Unit-clause Propagation with Universal Pure literals (UPUP) is described and correctness is proved for EFL based on UPUP. Empirical results on the 568-benchmark suite of QBFEVAL-10 are presented.

http://www.cse.ucsc.edu/~avg , http://www.cse.ucsc.edu/~sbwood , http://fmv.jku.at/lonsing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Freeman, J.W.: Failed literals in the Davis-Putnam procedure for SAT. In: DIMACS Challenge Workshop: Cliques, Coloring and Satisfiability (1993)

    Google Scholar 

  3. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Giunchiglia, E., Narizzano, M., Tacchella, A.: Monotone Literals and Learning in QBF Reasoning. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 260–273. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Groote, J.F., Warners, J.P.: The propositional formula checker HeerHugo. J. Automated Reasoning 24(1), 101–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jussila, T., Biere, A., Sinz, C., Kroning, D., Wintersteiger, C.M.: A First Step Towards a Unified Proof Checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Information and Computation 117, 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press (1999)

    Google Scholar 

  9. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A Non-prenex, Non-clausal QBF Solver with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: IEEE/ASL LICS Satisfiability Workshop, pp. 59–80. Elsevier (2001)

    Google Scholar 

  11. Lonsing, F., Biere, A.: Failed Literal Detection for QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 259–272. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Samulowitz, H., Bacchus, F.: Dynamically Partitioning for Solving QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Van Gelder, A.: Careful Ranking of Multiple Solvers with Timeouts and Ties. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 317–328. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Gelder, A., Wood, S.B., Lonsing, F. (2012). Extended Failed-Literal Preprocessing for Quantified Boolean Formulas. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics