Skip to main content

Randomness Behaviour in Blum Universal Static Complexity Spaces

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7386))

Included in the following conference series:

Abstract

In this paper we prove that plain complexity induces the weakest form of randomness for all Blum Universal Static Complexity Spaces [11]. As a consequence, there is all infinite sequences have an infinite number of non-random prefixes with respect to any given Blum Universal Static Complexity Space. This is a generalization of the result obtained by Solovay [27] and Calude [7] for plain complexity, and also of the result obtained by Câmpeanu [10], and independently, later on, by Bienvenu and Downey in [1] for prefix-free complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bienvenu, L., Downey, R.: Kolmogorov Complexity and Solovay Functions. In: Symposium on Theoretical Aspects of Computer Science, Freiburg, pp. 147–158 (2009)

    Google Scholar 

  2. Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM 14(2), 322–336 (1967)

    Article  MATH  Google Scholar 

  3. Blum, M.: On the size of machines. Information and Control 11, 257–265 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgin, M.: Generalized Kolmogorov complexity and other dual complexity measures. Translated from Kibernetica 4, 21–29 (1990); Original article submitted June 19 (1986)

    MathSciNet  Google Scholar 

  5. Burgin, M.: Algorithmic complexity of recursive and inductive algorithms. Theoretical Computer Science 317, 31–60 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgin, M.: Algorithmic complexity as a criterion of unsolvability. Theoretical Computer Science 383, 244–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calude, C.: Information and Randomness - An Algorithmic Perspective. Springer, Berlin (1994)

    MATH  Google Scholar 

  8. Calude, C.: Theories of Computational Complexity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  9. Calude, C., Salomaa, K., Roblot, T.K.: Finite State Complexity and Randomness. Technical Report CDMTCS 374 (December 2009) (revised June 2010)

    Google Scholar 

  10. Câmpeanu, C.: Private Communication to Helmut Jurgensen and Cristian Calude at first edition of DCAGRS (1999)

    Google Scholar 

  11. Câmpeanu, C.: A Note on Blum Static Complexity Measures. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 71–80. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Chaitin, G.J.: On the Length of Programs for Computing Finite Binary Sequences. J. ACM 13(4), 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaitin, G.J.: On the Length of Programs for Computing Finite Binary Sequences: statistical considerations. J. ACM 16(1), 145–159 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaitin, G.J.: A Theory of Program Size Formally Identical to Information Theory. J. ACM 22(3), 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaitin, G.J.: A Theory of Program Size Formally Identical to Information Theory. J. ACM 22(3), 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chaitin, G.J.: Algorithmic Information Theory. Cambridge Tracts in Theoretical Computer Science, vol. I. Cambridge University Press (1987)

    Google Scholar 

  17. Davis, M., Sigal, R., Weyuker, E.: Computability, Complexity, and Languages, 1st edn. Academic Press, New York (1994)

    Google Scholar 

  18. Gacs, P.: On the symmetry of algorithmic information. Soviet Mathematics Doklady 15, 1477–1480 (1974)

    MATH  Google Scholar 

  19. Kolmogorov, A.N.: Problems Inform. Transmission 1, 1–7 (1965)

    MathSciNet  Google Scholar 

  20. Levin, L.A.: Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission 10(3), 206–210 (1974)

    Google Scholar 

  21. Loveland, D.A.: On Minimal-Program Complexity Measures. In: STOC, pp. 61–65 (1969)

    Google Scholar 

  22. Papadimitriou, C.H., Lewis, H.: Elements of the theory of computation. Prentice-Hall, Englewood Cliffs (1982); 2nd edn. (September 1997)

    Google Scholar 

  23. Schnorr, C.-P.: Process complexity and effective random tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Solomonoff, R.J.: A Formal Theory of Inductive Inference, Part I. Information and Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Solomonoff, R.J.: A Formal Theory of Inductive Inference, Part II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Solomonoff, R.J.: Complexity-Based Induction Systems: Comparisons and Convergence Theorems. IEEE Trans. on Information Theory IT-24(4), 422–432 (1978)

    Article  MathSciNet  Google Scholar 

  27. Solovay, R.M.: Draft of paper (or series of papers) on Chaitin’s work. Unpublished notes, pp. 1–215 (May 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Câmpeanu, C. (2012). Randomness Behaviour in Blum Universal Static Complexity Spaces. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31623-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31622-7

  • Online ISBN: 978-3-642-31623-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics