Abstract
It is demonstrated that the family of languages generated by unambiguous conjunctive grammars with 1 nonterminal symbol is strictly included in the languages generated by 2-nonterminal grammars, which is in turn a proper subset of the family generated using 3 or more nonterminal symbols. This hierarchy is established by considering grammars over a one-letter alphabet, for which it is shown that 1-nonterminal grammars generate only regular languages, 2-nonterminal grammars generate some non-regular languages, but all of them have upper density zero, while 3-nonterminal grammars may generate some non-regular languages of non-zero density. It is also shown that the equivalence problem for 2-nonterminal grammars is undecidable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)
Baader, F., Okhotin, A.: Complexity of language equations with one-sided concatenation and all Boolean operations. In: 20th International Workshop on Unification, UNIF 2006, Seattle, USA, August 11, pp. 59–73 (2006)
Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata, I and II. International Journal of Computer Mathematics 15, 195–212; 16, 3–22 (1984)
Dyer, C.: One-way bounded cellular automata. Information and Control 44, 261–281 (1980)
Gruska, J.: Descriptional complexity of context-free languages. In: Mathematical Foundations of Computer Science, MFCS 1973, Strbské Pleso, High Tatras, Czechoslovakia, September 3-8, pp. 71–83 (1973)
Jeż, A.: Conjunctive grammars can generate non-regular unary languages. International Journal of Foundations of Computer Science 19(3), 597–615 (2008)
Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory of Computing Systems 46(1), 27–58 (2010)
Jeż, A., Okhotin, A.: Complexity of equations over sets of natural numbers. Theory of Computing Systems 48(2), 319–342 (2011)
Jeż, A., Okhotin, A.: One-nonterminal conjunctive grammars over a unary alphabet. Theory of Computing Systems 49(2), 319–342 (2011)
Jeż, A., Okhotin, A.: Unambiguous conjunctive grammars over a one-letter alphabet. TUCS Technical Report 1043, Turku Centre for Computer Science (submitted for publication, April 2012)
Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)
Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata. Informatique Théorique et Applications 38(1), 69–88 (2004)
Okhotin, A.: On the number of nonterminals in linear conjunctive grammars. Theoretical Computer Science 320(2-3), 419–448 (2004)
Okhotin, A.: Unambiguous Boolean grammars. Information and Computation 206, 1234–1247 (2008)
Okhotin, A.: Fast Parsing for Boolean Grammars: A Generalization of Valiant’s Algorithm. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 340–351. Springer, Heidelberg (2010)
Okhotin, A., Reitwießner, C.: Parsing unary Boolean grammars using online convolution. In: Advances and Applications of Automata on Words and Trees (Dagstuhl seminar 10501), December 12-17 (2010)
Okhotin, A., Rondogiannis, P.: On the expressive power of univariate equations over sets of natural numbers. Information and Computation 212, 1–14 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jeż, A., Okhotin, A. (2012). On the Number of Nonterminal Symbols in Unambiguous Conjunctive Grammars. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-31623-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31622-7
Online ISBN: 978-3-642-31623-4
eBook Packages: Computer ScienceComputer Science (R0)