Abstract
Recently, a characterization of the class of nondeterministic finite automata (NFAs) for which determinization results in a minimal deterministic finite automaton (DFA), was given in [2]. We present a similar result for the case of symmetric difference NFAs. Also, we show that determinization of any minimal symmetric difference NFA produces a minimal DFA.
This research was supported by the National Research Foundation of South Africa, by the ERDF funded Estonian Center of Excellence in Computer Science, EXCS, by the Estonian Science Foundation grant 7520, and by the Estonian Ministry of Education and Research target-financed research theme no. 0140007s12.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite events. In: Proceedings of the Symposium on the Mathematical Theory of Automata. MRI Symposia Series, pp. 529–561. Polytechnic Press of Polytechnic Institute of Brooklyn (1963)
Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)
Brzozowski, J., Tamm, H.: Quotient complexities of atoms of regular languages. In: Proceedings of the 16th International Conference on Developments in Language Theory (DLT). Springer (August 2012)
Denis, F., Lemay, A., Terlutte, A.: Residual Finite State Automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 144–157. Springer, Heidelberg (2001)
Dornhoff, L., Hohn, F.: Applied Modern Algebra. Macmillan Publishing Company (1978)
Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer Publishing Company, Incorporated (2009)
Droste, M., Rahonis, G.: Weighted Automata and Weighted Logics on Infinite Words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)
Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison Wesley (1979)
Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Salomaa Festschrift. LNCS, vol. 3113, pp. 112–124. Springer, Heidelberg (2004)
Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)
Kirsten, D., Mäurer, I.: On the determinization of weighted automata. Journal of Automata, Languages and Combinatorics 10(2/3), 287–312 (2005)
Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)
Stone, H.: Discrete Mathematical Structures. Science Research Associates (1973)
van der Merwe, B., van Zijl, L., Geldenhuys, J.: Ambiguity of Unary Symmetric Difference NFAs. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 256–266. Springer, Heidelberg (2011)
Van Zijl, L.: Generalized Nondeterminism and the Succinct Representation of Regular Languages. Ph.D. thesis, Stellenbosch University (November 1997)
Van Zijl, L.: On binary symmetric difference NFAs and succinct representations of regular languages. Theoretical Computer Science 328(1), 161–170 (2004)
Vuillemin, J., Gama, N.: Compact Normal Form for Regular Languages as Xor Automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van der Merwe, B., Tamm, H., van Zijl, L. (2012). Minimal DFA for Symmetric Difference NFA. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-31623-4_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31622-7
Online ISBN: 978-3-642-31623-4
eBook Packages: Computer ScienceComputer Science (R0)