Abstract
Hybrid systems have a complete axiomatization in differential dynamic logic relative to continuous systems. They also have a complete axiomatization relative to discrete systems. Moreover, there is a constructive reduction of properties of hybrid systems to corresponding properties of continuous systems or to corresponding properties of discrete systems. We briefly summarize and discuss some of the implications of these results.
This material is based upon work supported by the National Science Foundation under NSF CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181, and under Grant Nos. CNS-1035800 and CNS-0931985, by the ONR award N00014-10-1-0188, by the Army Research Office under Award No. W911NF-09-1-0273, and by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28. IEEE Computer Society (2012)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)
Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: Tilbury, D. (ed.) ACC (2012)
Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7(1), 70–90 (1978)
Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)
Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of programs (preliminary report). In: STOC, pp. 261–268. ACM (1977)
Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)
Istrail, S.: An arithmetical hierarchy in propositional dynamic logic. Inf. Comput. 81(3), 280–289 (1989)
Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997)
Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theor. Comp. Sci. 14, 113–118 (1981)
Leivant, D.: Matching explicit and modal reasoning about programs: A proof theoretic delineation of dynamic logic. In: LICS, pp. 157–168. IEEE Computer Society (2006)
Loos, S.M., Platzer, A.: Safe intersections: At the crossing of hybrid systems and verification. In: Yi, K. (ed.) ITSC, pp. 1181–1186. Springer (2011)
Loos, S.M., Platzer, A., Nistor, L.: Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)
Meyer, A.R., Parikh, R.: Definability in dynamic logic. J. Comput. Syst. Sci. 23(2), 279–298 (1981)
Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control. In: Lu, C. (ed.) ICCPS, pp. 171–180. IEEE (2012)
Parikh, R.: The Completeness of Propositional Dynamic Logic. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978)
Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)
Platzer, A.: Differential Dynamic Logic for Verifying Parametric Hybrid Systems. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232. Springer, Heidelberg (2007)
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)
Platzer, A.: Differential Dynamic Logics: Automated Theorem Proving for Hybrid Systems. Ph.D. thesis, Department of Computing Science, University of Oldenburg (December 2008) (appeared with Springer)
Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)
Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)
Platzer, A.: Quantified Differential Dynamic Logic for Distributed Hybrid Systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)
Platzer, A.: Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 446–460. Springer, Heidelberg (2011)
Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. In: Logical Methods in Computer Science (2012); special issue for selected papers from CSL 2010
Platzer, A.: The complete proof theory of hybrid systems. In: LICS [1]
Platzer, A.: Logics of dynamical systems (invited tutorial). In: LICS [1]
Platzer, A.: The structure of differential invariants and differential cut elimination. In: Logical Methods in Computer Science (to appear, 2012)
Platzer, A., Clarke, E.M.: Computing Differential Invariants of Hybrid Systems as Fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)
Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009); special issue for selected papers from CAV 2008
Platzer, A., Clarke, E.M.: Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)
Platzer, A., Quesel, J.-D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)
Platzer, A., Quesel, J.-D.: European Train Control System: A Case Study in Formal Verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)
Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)
Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE (1976)
Reif, W., Schellhorn, G., Stenzel, K.: Proving System Correctness with KIV 3.0. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 69–72. Springer, Heidelberg (1997)
Renshaw, D.W., Loos, S.M., Platzer, A.: Distributed Theorem Proving for Distributed Hybrid Systems. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 356–371. Springer, Heidelberg (2011)
Segerberg, K.: A completeness theorem in the modal logic of programs. Notices AMS 24, 522 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Platzer, A. (2012). Logical Analysis of Hybrid Systems. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-31623-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31622-7
Online ISBN: 978-3-642-31623-4
eBook Packages: Computer ScienceComputer Science (R0)