Abstract
The main objective of this paper is to compare a strategy to rule induction based on feature selection with another strategy, not using feature selection, exemplified by the LEM2 algorithm. It is shown that LEM2 significantly outperforms the strategy or rule induction based on feature selection in terms of an error rate (5% significance level, two-tailed test). At the same time, the LEM2 algorithm induces smaller rule sets with the smaller total number of conditions as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)
Kohavi, R., John, G.: Wrappers for feature selection. Artificial Intelligence 97, 273–324 (1997)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feauture Extraction. Foundations and Applications. Springer, Heidelberg (2006)
Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman and Hall/CRC, Boca Raton, FL (2007)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Grzymala-Busse, J.W., Slowinski, R., Ziarko, W.: Rough sets. Communications of the ACM 38, 89–95 (1995)
Grzymala-Busse, J.W.: Rule induction. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 249–265. Springer, Heidelberg (2010)
Chan, C.C., Grzymala-Busse, J.W.: On the attribute redundancy and the learning programs ID3, PRISM, and LEM2. Technical report, Department of Computer Science, University of Kansas (1991)
Grzymala-Busse, J.W.: LERS—a system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)
Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)
Booker, L.B., Holland, D.E., Goldberg, J.F.: Classifier systems and genetic algorithms. In: Carbonell, J.G. (ed.) Machine Learning. Paradigms and Methods, pp. 235–282. MIT Press, Boston (1990)
Holland, J.H., Holyoak, K.J., Nisbett, R.E.: Induction. Processes of Inference, Learning, and Discovery. MIT Press, Boston (1986)
Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining. Poznan University of Technology Press, Poznan (2001)
Grzymala-Busse, J.W., Grzymala-Busse, W.J.: Handling missing attribute values. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 33–51. Springer, Heidelberg (2010)
Chmielewski, M.R., Grzymala-Busse, J.W.: Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning 15(4), 319–331 (1996)
Fang, J., Grzymala-Busse, J.: Leukemia prediction from gene expression data—a rough set approach. In: Proceedings of the Eighth International Conference on Artifical Intelligence and Soft Computing, pp. 899–908 (2006)
Fang, J., Grzymala-Busse, J.W.: Mining of MicroRNA Expression Data—A Rough Set Approach. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 758–765. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grzymala-Busse, J.W. (2012). An Empirical Comparison of Rule Induction Using Feature Selection with the LEM2 Algorithm. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-31709-5_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31708-8
Online ISBN: 978-3-642-31709-5
eBook Packages: Computer ScienceComputer Science (R0)