Abstract
Information in databases can be imperfect and this imperfection has several forms and causes. In some cases, a single value should be stored, but it is (partially) unknown. The uncertainty about which value to store leads to the aforementioned imperfection. In temporal databases, uncertainty can arise, concerning which temporal notion needs to be stored. Because in temporal databases, temporal notions influence the consistency with which the database models the reality, this uncertainty has a direct impact on the consistency of the model. To represent this temporal uncertainty, previous works have adapted fuzzy sets with conjunctive interpretation, an approach that might prove misleading. This work presents a model that represents the uncertainty using possibility and necessity measures, which are fuzzy sets with disjunctive interpretations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)
Billiet, C., Pons, J.E., Matthé, T., De Tré, G., Pons Capote, O.: Bipolar Fuzzy Querying of Temporal Databases. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS (LNAI), vol. 7022, pp. 60–71. Springer, Heidelberg (2011)
Bohlen, M., Busatto, R., Jensen, C.: Point-versus interval-based temporal data models. In: Proceedings of 14th Int. Conf. on Data Engineering 1998, pp. 192–200 (1998)
Bolour, A., Anderson, T.L., Dekeyser, L.J., Wong, H.K.T.: The role of time in information processing: a survey. ACM SIGMOD Record 12, 27–50 (1982)
Bosc, P., Pivert, O.: Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics. Int. J. Uncertainty Fuzziness Knowlege-Based Syst. 18(5), 565–603 (2010)
Van der Cruyssen, B., De Caluwe, R., De Tré, G.: A theoretical fuzzy time model based on granularities. In: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, pp. 1127–1131. ELITE Foundation (1997)
Dekhtyar, A., Ross, R., Subrahmanian, V.S.: Probabilistic temporal databases, i: algebra. ACM Trans. Database Syst. 26, 41–95 (2001)
Dubois, D., HadjAli, A., Prade, H.: Fuzziness and uncertainty in temporal reasoning. Journal of Universal Computer Science 9(9), 1168–1194 (2003)
Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Information Sciences 30, 183–224 (1983)
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)
Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man, and Cybernetics 19, 729–744 (1989)
Dyreson, C., Grandi, F., et al.: A consensus glossary of temporal database concepts. SIGMOD Rec. 23, 52–64 (1994)
Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL Queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp. 164–174. Springer, Heidelberg (1998)
Garrido, C., Marin, N., Pons, O.: Fuzzy intervals to represent fuzzy valid time in a temporal relational database. Int. J. Uncertainty Fuzziness Knowlege-Based Syst. 17, 173–192 (2009)
Jensen, C.S., Mark, L., Roussopoulos, N.: Incremental implementation model for relational databases with transaction time. IEEE Trans. Knowl. Data Eng. 3, 461–473 (1991)
Jensen, C.S., Snodgrass, R.T., Soo, M.D.: The tsql2 data model. In: The TSQL2 Temporal Query Language, pp. 153–238 (1995)
Lin, H. (codirector), C.J., Bohlen, M., Busatto, R., Gregersen, H., Torp, K. (codirector), R.S., Datta, A., Ram, S.: Efficient conversion between temporal granularities. Master’s thesis, The University of Arizona (1997)
Medina, J.M., Pons, O., Cubero, J.C.: Gefred. a generalized model of fuzzy relational databases. Information Sciences 76, 87–109 (1994)
Nascimento, M.A., Eich, M.H.: Decision time in temporal databases. In: Proceedings of the 2nd Int. Workshop on Temporal Representation and Reasoning, pp. 157–162 (1995)
Ohlbach, H.J.: Relations between fuzzy time intervals. In: International Symposium on Temporal Representation and Reasoning, pp. 44–51 (2004)
Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling Cautious Selection in Spatial Probabilistic Temporal Databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–340. Springer, Heidelberg (2010)
Pons, J.E., Bronselaer, A., De Tré, G., Pons, O.: Possibilistic evaluation of sets, Submitted to the Int. J. Uncertainty Fuzziness Knowlege-Based Syst. (2011)
Schockaert, S., De Cock, M., Kerre, E.E.: Fuzzifying allen’s temporal interval relations. IEEE Transactions on Fuzzy Systems 16(2), 517–533 (2008)
Snodgrass, R.: The temporal query language tquel. In: Proceedings of the 3rd ACM SIGACT-SIGMOD, pp. 204–213. ACM, New York (1984)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pons, J.E., Billiet, C., Pons Capote, O., De Tré, G. (2012). A Possibilistic Valid-Time Model. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-31709-5_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31708-8
Online ISBN: 978-3-642-31709-5
eBook Packages: Computer ScienceComputer Science (R0)