Abstract
Let L be a linear space of real bounded random variables on the probability space \((\Omega,\mathcal{A},P_0)\). A finitely additive probability P on \(\mathcal{A}\) such that
is called EMFA (equivalent martingale finitely additive probability). In this note, EMFA’s are investigated in case P 0 is atomic. Existence of EMFA’s is characterized and various examples are given. Given y ∈ ℝ and a bounded random variable Y, it is also shown that \(X_n+y\overset{a.s.}\longrightarrow Y\), for some sequence (X n ) ⊂ L, provided EMFA’s exist and E P (Y) = y for each EMFA P.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Back, K., Pliska, S.R.: On the fundamental theorem of asset pricing with an infinite state space. J. Math. Econ. 20, 1–18 (1991)
Berti, P., Rigo, P.: Integral representation of linear functionals on spaces of unbounded functions. Proc. Amer. Math. Soc. 128, 3251–3258 (2000)
Berti, P., Regazzini, E., Rigo, P.: Strong previsions of random elements. Statist. Methods Appl. 10, 11–28 (2001)
Berti, P., Rigo, P.: Convergence in distribution of non measurable random elements. Ann. Probab. 32, 365–379 (2004)
Berti, P., Pratelli, L., Rigo, P.: Finitely additive equivalent martingale measures. J. Theoret. Probab. (to appear, 2012), http://economia.unipv.it/pagp/pagine_personali/prigo/arb.pdf
Dalang, R., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. and Stoch. Reports 29, 185–201 (1990)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Annalen 300, 463–520 (1994)
Delbaen, F., Schachermayer, W.: The mathematics of arbitrage. Springer (2006)
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20, 381–408 (1979)
Jacka, S.D.: A martingale representation result and an application to incomplete financial markets. Math. Finance 2, 23–34 (1992)
Kreps, D.M.: Arbitrage and equilibrium in economics with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)
Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré −Probab. et Statist. 26, 451–460 (1990)
Tehranchi, M.R.: Characterizing attainable claims: a new proof. J. Appl. Probab. 47, 1013–1022 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berti, P., Pratelli, L., Rigo, P. (2012). Finitely Additive FTAP under an Atomic Reference Measure. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-31724-8_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31723-1
Online ISBN: 978-3-642-31724-8
eBook Packages: Computer ScienceComputer Science (R0)