Skip to main content

Minimax Regret Capacity Identification

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

We study the minimax-regret version of the Choquet integral maximization problem. Our main result is to show that there always exist a capacity such that the robust solution is also a maximizer of the Choquet integral with respect to this capacity. However, in contrast to additive decision models (the case of several priors) it is not always a global one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chateauneuf, A., Jaffray, J.: Some characterizations of lower probabilities and other monotone capacities through the use of möbius inversion. Mathematical Social Sciences 17(3), 263–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Combarro, E., Miranda, P.: On the polytope of non-additive measures. Fuzzy Sets and Systems 159(16), 2145–2162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Combarro, E., Miranda, P.: On the structure of the k-additive fuzzy measures. Fuzzy Sets and Systems 161(17), 2314–2327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Costa, C., Vansnick, J.: MACBETH–An Interactive Path Towards the Construction of Cardinal Value Functions. International Transactions in Operational Research 1(4), 489–500 (1994)

    Article  MATH  Google Scholar 

  5. Denneberg, D.: Totally monotone core and products of monotone measures. International Journal of Approximate Reasoning 24(2-3), 273–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18(2), 141–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grabisch, M.: Alternative representations of discrete fuzzy measures for decision making. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 5(5), 587–607 (1997); 4th International Conference on Soft Computing (IIZUKA 1996), Iizuka, Japan (September 1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92(2), 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory:Applications of the Kappalab R package. European Journal of Operational Research 186(2), 766–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grabisch, M., Miranda, P.: On the vertices of the k-additive core. Discrete Mathematics 308(22), 5204–5217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Review, 380–429 (1993)

    Google Scholar 

  12. Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems 137(1), 11–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Labreuche, C., Miranda, P., Lehuede, F.: Computation of the robust preference relation combining a Choquet integral and utility functions. In: 5th Multidisciplinary Workshop on Advances in Preference Handling, Lisbon, Portugal (August 2010)

    Google Scholar 

  14. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming: The State of the Art, pp. 235–257 (1983)

    Google Scholar 

  15. Marichal, J.L., Roubens, M.: Determination of weights of interacting criteria from a reference set. European Journal of Operational Research 124(3), 641–650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milnor, J.: Games against nature. Decision Processes, 49 (1954)

    Google Scholar 

  17. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): interaction index. In: 9th Fuzzy System Symposium, pp. 693–696 (1993)

    Google Scholar 

  18. Raiffa, H., Schlaifer, R.: Applied statistical decision theory. MIT Press (1968)

    Google Scholar 

  19. Savage, L.J.: The theory of statistical decision. Journal of the American Statistical Association 46(253), 55–67 (1951)

    Article  MATH  Google Scholar 

  20. Shapley, L.: A value for n-person games. Contributions to the Theory of Games 2, 307–317 (1953)

    MathSciNet  Google Scholar 

  21. Stoye, J.: Axioms for minimax regret choice correspondences. Journal of Economic Theory 146(6), 2226–2251 (2011)

    Article  MATH  Google Scholar 

  22. Timonin, M.: Maximization of the Choquet integral over a convex set and its application to resource allocation problems. Annals of Operations Research (2012), http://dx.doi.org/10.1007/s10479-012-1147-9

  23. Timonin, M.: Robust maximization of the Choquet integral. Fuzzy Sets and Systems (2012), http://dx.doi.org/10.1016/j.fss.2012.04.014

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Timonin, M. (2012). Minimax Regret Capacity Identification. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics