Skip to main content

SMAA-Choquet: Stochastic Multicriteria Acceptability Analysis for the Choquet Integral

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

In this paper, we extend the Choquet integral decision model in the same spirit of the Stochastic Multicriteria Acceptability Analysis (SMAA) method that takes into account a probability distribution over the preference parameters of multiple criteria decision methods. In order to enrich the set of parameters (the capacities) compatible with the DM’s preference information on the importance of criteria and interaction between couples of criteria, we put together Choquet integral with SMAA. The sampling of the compatible preference parameters (the capacities) is obtained by a Hit-and-Run procedure. Finally, we evaluate a set of capacities contributing to the evaluation of the rank acceptability indices and of the central preference parameters as done in the SMAA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angilella, S., Greco, S., Lamantia, F., Matarazzo, B.: Assessing non-additive utility for multicriteria decision aid. European Journal of Operational Research 158(3), 734–744 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angilella, S., Greco, S., Matarazzo, B.: Non-additive robust ordinal regression: A multiple criteria decision model based on the choquet integral. European Journal of Operational Research 201(1), 277–288 (2010)

    Article  MATH  Google Scholar 

  3. Bana e Costa, C.A.: A multicriteria decision aid methodology to deal with conflicting situations on the weights. European Journal of Operational Research 26(1), 22–34 (1986)

    Google Scholar 

  4. Bana e Costa, C.A.: A methodology for sensitivity analysis in three-criteria problems: A case study in municipal management. European Journal of Operational Research 33(2), 159–173 (1988)

    Google Scholar 

  5. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of möbius inversion. Mathematical Social Sciences 17, 263–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5(54), 131–295 (1953)

    MathSciNet  Google Scholar 

  7. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2010)

    Google Scholar 

  8. Gilboa, I., Schmeidler, D.: Additive representations of non-additive measures and the choquet integral. Ann. Operational Research 52, 43–65 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research 89, 445–456 (1996)

    Article  MATH  Google Scholar 

  10. Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92, 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175, 1–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2), 416–436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. J. Wiley, New York (1976)

    Google Scholar 

  14. Lahdelma, R., Hokkanen, J., Salminen, P.: SMAA - stochastic multiobjective acceptability analysis. European Journal of Operational Research 106(1), 137–143 (1998)

    Article  Google Scholar 

  15. Lahdelma, R., Salminen, P.: SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research 49(3), 444–454 (2001)

    Article  MATH  Google Scholar 

  16. Marichal, J.L., Roubens, M.: Determination of weights of interacting criteria from a reference set. European Journal of Operational Research 124(3), 641–650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murofushi, S., Soneda, T.: Techniques for reading fuzzy measures (iii): interaction index. In: 9th Fuzzy Systems Symposium, Sapporo, Japan, pp. 693–696 (1993)

    Google Scholar 

  18. Barba Romero, S., Pomerol, J.C.: Choix multicritère dans l’enterprise. Heres. Collection Informatique (1993)

    Google Scholar 

  19. Rota, G.C.: On the foundations of combinatorial theory i. Theory of möbius functions. Wahrscheinlichkeitstheorie und Verwandte Gebiete 2, 340–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  21. Shapley, L.S.: A value for n-person games. In: Tucker, A.W., Kuhn, H.W. (eds.) Contributions to the Theory of Games II, p. 307. Princeton University Press, Princeton (1953)

    Google Scholar 

  22. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Operations Research 32, 1296–1308 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tervonen, T., Figueira, J.: A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-Criteria Decision Analysis 15(1-2), 1–14 (2008)

    Article  MATH  Google Scholar 

  24. Tervonen, T., Van Valkenhoef, G., Basturk, N., Postmus, D.: Efficient weight generation for simulation based multiple criteria decision analysis. In: EWG-MCDA, Tarragona, April 12-14 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angilella, S., Corrente, S., Greco, S. (2012). SMAA-Choquet: Stochastic Multicriteria Acceptability Analysis for the Choquet Integral. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics