Skip to main content

Reasoning under Uncertainty in the AHP Method Using the Belief Function Theory

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

The Analytic Hierarchy Process (AHP) method was introduced to help the decision maker to express judgments on alternatives over a number of criteria. In this paper, our proposal extends the AHP method to an uncertain environment, where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. In fact, we suggest a novel framework that tackles the challenge of introducing uncertainty in both the criterion and the alternative levels, where the objective is to represent imperfection that may appear in the pair-wise comparisons and to model the relationship between these alternatives and criteria through conditional beliefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beynon, M., Curry, B., Morgan, P.: The Dempster-Shafer theory of evidence: An alternative approach to multicriteria decision modelling. Omega 28(1), 37–50 (2000)

    Article  MathSciNet  Google Scholar 

  2. Brans, J.P., Vincke, P., Marechal, B.: How to select and how to rank projects: The PROMOTEE method. European Journal of Operational Research 24, 228–238 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dezert, J., Tacnet, J.M., Batton-Hubert, M., Smarandache, F.: Multi-Criteria Decision Making based on DSmT-AHP. In: Workshop on the Theory of Belief Functions (2010)

    Google Scholar 

  4. Ennaceur, A., Elouedi, Z., Lefevre, E.: Handling Partial Preferences in the Belief AHP Method: Application to Life Cycle Assessment. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 395–400. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: state of the art surveys. Springers International Series in Operations Research and Management Science, vol. 4 (2005)

    Google Scholar 

  6. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press (1976)

    Google Scholar 

  7. Laarhoven, P.V., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems 11, 199–227 (1983)

    Article  MathSciNet  Google Scholar 

  8. Saaty, T.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New-York (1980)

    MATH  Google Scholar 

  10. Schoner, B., Wedley, W.C.: Ambiguous criteria weights in AHP: consequences and solutions. Decision Sciences 20, 462–475 (1989)

    Article  Google Scholar 

  11. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  12. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Smets, P.: The combination of evidence in the Transferable Belief Model. IEEE Pattern Analysis and Machine Intelligence, 447–458 (1990)

    Google Scholar 

  14. Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Triantaphyllou, E.: Multi-Criteria Decision Making methods: a comparative study. Kluwer Academic Publishers (2000)

    Google Scholar 

  16. Utkin, L.V.: A new ranking procedure by incomplete pairwise comparisons using preference subsets. Intelligent Data Analysis 13(2), 229–241 (2009)

    MathSciNet  Google Scholar 

  17. Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill Book Company (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ennaceur, A., Elouedi, Z., Lefevre, E. (2012). Reasoning under Uncertainty in the AHP Method Using the Belief Function Theory. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics