Skip to main content

A Fuzzy Method for the Assessment of the Scientific Production

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

The problem of measuring the impact of a scientific output of a researcher has attracted significant interest in recent years. Most of the methodologies actual in use focus the attention to bibliometric indices and features of the journals. In this note we propose a new approach based on class of assignment and a fuzzy extension to asses the research output of a scholar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, R., Ewing, J., Taylor, P.: Citation Statistics. A Report from the International Mathematical Union (IMU) in Cooperation with the International Council of Industrial and Applied Mathematics (ICIAM) and the Institute of Mathematical Statistics (IMS). Statistical Science 24, 1–14 (2009)

    MathSciNet  Google Scholar 

  2. Alonso, S., Cabrerizo, F.J., Herrera-Viedma, E., Herrera, F.: h-Index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics 3, 273–289 (2009)

    Article  Google Scholar 

  3. Beliakov, G., James, S.: Citation-based journal ranks: the use of fuzzy measure. Fuzzy Sets and Systems 167, 101–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouyssou, D., Marchant, T.: Consistent bibliometric rankings of authors and of journals. Journal of Infometrics 4, 365–378 (2010)

    Article  Google Scholar 

  5. Bouyssou, D., Marchant, T.: Bibliometric rankings of journals based on Impact Factors: An axiomatic approach. Journal of Infometrics 5, 75–86 (2011)

    Article  Google Scholar 

  6. Campanario, J.M.: Peer review for journals as it stands today, part 1. Science Communication 19, 181–211 (1998)

    Article  Google Scholar 

  7. Campanario, J.M.: Peer review for journals as it stands today, part 2. Science Communication 19, 277–306 (1998)

    Article  Google Scholar 

  8. Cardin, M., Corazza, M., Funari, S., Giove, S.: A Fuzzy-based Scoring Rule for Author Ranking - an alternative of h-index. In: Apolloni, B., Bassis, S., Morabito, C.F. (eds.) Neural Nets, WIRN 2011, vol. 234, pp. 36–45. IOS Press (2011)

    Google Scholar 

  9. Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets and Systems 144, 227–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franceschet, M., Costantini, A.: The first Italian research assessment excercise: A bibliometric perspective. Journal of Informetrics 5, 275–291 (2011)

    Article  Google Scholar 

  11. Hirsch, J.: An index to quantify an individuals scientific research output. Proceedings of the National Academy of Sciences 102, 16569–16572 (2005)

    Article  Google Scholar 

  12. Kiselman, C.O.: Chararcterizing digital straightness and digital convexity by means of difference operators. Mathematika 57, 355–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Journal of Cybernetics (2000)

    Google Scholar 

  14. Hussain, S., Grahn, H.: Ranking journals, conferences and authors in computer graphics: a fuzzy reasoning. In: IADIS International Conference Informatics, pp. 75–82 (2008)

    Google Scholar 

  15. Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems. Academic Press Inc., Boston (1994)

    Google Scholar 

  16. Turban, E., Zhou, D., Ma, J.: A group decision support approach to evaluating journals. Information & Management 42, 31–44 (2004)

    Article  Google Scholar 

  17. Vincke, P., Gassner, M., Roy, B.: Multicriteria Decision Aid. John Wiley & Sons, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardin, M., Giove, S. (2012). A Fuzzy Method for the Assessment of the Scientific Production. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics