Abstract
Based on the idea of the decomposition integral proposed by Event and Lehrer, we introduce a new type of integrals. Moreover, we study the classes of measures turning inequalities (or incomparability) between special integrals such as Shilkret, Choquet, concave etc. integrals, into equalities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1955)
Event, Y., Lehrer, E.: Decomposition-Integral: Unifying Choquet and the Concave Integrals, working paper
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. Cambridge University Press, Cambridge (2009)
Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Transactions on Fuzzy Systems 18, 178–187 (2010)
Lehrer, E.: A new integral for capacities. Economic Theory 39, 157–176 (2009)
Lin, T.Y.: Belief functions and probability for general spaces. In: 2011 IEEE Int. Conference on Granular Computing, pp. 314–319 (2010)
Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)
Yang, Q.: The Pan-integral on the Fuzzy Measure Space. Fuzzy Mathematics 3, 107–114 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stupňanová, A. (2012). A Note on Decomposition Integrals. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-31724-8_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31723-1
Online ISBN: 978-3-642-31724-8
eBook Packages: Computer ScienceComputer Science (R0)