Skip to main content

A Note on Decomposition Integrals

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

Based on the idea of the decomposition integral proposed by Event and Lehrer, we introduce a new type of integrals. Moreover, we study the classes of measures turning inequalities (or incomparability) between special integrals such as Shilkret, Choquet, concave etc. integrals, into equalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1955)

    Article  MathSciNet  Google Scholar 

  2. Event, Y., Lehrer, E.: Decomposition-Integral: Unifying Choquet and the Concave Integrals, working paper

    Google Scholar 

  3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Transactions on Fuzzy Systems 18, 178–187 (2010)

    Article  Google Scholar 

  5. Lehrer, E.: A new integral for capacities. Economic Theory 39, 157–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, T.Y.: Belief functions and probability for general spaces. In: 2011 IEEE Int. Conference on Granular Computing, pp. 314–319 (2010)

    Google Scholar 

  7. Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)

    MathSciNet  Google Scholar 

  8. Yang, Q.: The Pan-integral on the Fuzzy Measure Space. Fuzzy Mathematics 3, 107–114 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stupňanová, A. (2012). A Note on Decomposition Integrals. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics