Skip to main content

Rule-Base Design Using Probabilistic Weights: A Preliminary Analysis of Uncertainty Aspects

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

This paper proposes an approach for rule base design that considers most of information obtained from a data set. The proposed method provides fuzzy rules where each consequent label has an associated weight which is determined in a probabilistic way. The paper also presents the method’s formalization using crisp and fuzzy relations and their association with the probability theory. The resulting fuzzy system is applied to five instances of a classification problem and its performance is compared to that obtained from a fuzzy classifier provided by the classical Wang-Mendel method. The results show that the proposed design method outperforms the comparison approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy Sets. Inform. and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Meghdadi, A., Akbarzadeh, T.M.: Probabilistic Fuzzy Logic and Probabilistic Fuzzy Systems. In: 10th IEEE International Conference on Fuzzy Systems, pp. 1127–1130 (2001)

    Google Scholar 

  3. Colettia, G., Scozzafavab, R.: Conditional probability and fuzzy information. Computational Statistics & Data Analysis 51, 115–132 (2006)

    Article  MathSciNet  Google Scholar 

  4. Laviolette, M., Seaman Jr., J.W.: The efficacy of fuzzy representations of uncertainty. IEEE Transactions on Fuzzy Systems 2, 4–15 (1994)

    Article  Google Scholar 

  5. Wilson, N.: Vagueness and Bayesian Probability. IEEE Transactions on Fuzzy Systems 2, 34–36 (1994)

    Article  Google Scholar 

  6. Kwakernaak, H.: Fuzzy Random Variables-I. Definitions and Theorems. Inf. Sci. 15, 1–29 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kwakernaak, H.: Fuzzy Random Variables II. Algorithms and examples for the discrete case. Inf. Sci. 17(3), 253–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Taylor, M., Boswell, S.: A central limit theorem for fuzzy random variables. Fuzzy Sets and Systems 24, 331–344 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirota, K.: Concepts of probabilistic set. Fuzzy Sets and Systems 5, 31–46 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, L., Mendel, M.: Generating Fuzzy Rules by Learning from Examples. IEEE Trans. Systems Man and Cybernetics 22, 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  11. Pedrycs, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press (1998)

    Google Scholar 

  12. Liu, Z., Li, H.-X.: A Probabilistic Fuzzy Logic System for Modeling and Control. IEEE Transactions on Fuzzy Systems 13, 848–859 (2005)

    Article  Google Scholar 

  13. Zhang, G.P.: Neural networks for classification: a survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 30, 451–462 (2000)

    Article  Google Scholar 

  14. Weiss, S., Kulikowski, C.: Computer Systems That Learn. Morgam Kaufmann (1991)

    Google Scholar 

  15. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods. John Wiley & Sons (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Melo, L.G., Lucas, L.A., Delgado, M.R. (2012). Rule-Base Design Using Probabilistic Weights: A Preliminary Analysis of Uncertainty Aspects. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics