Skip to main content

Average Rate of Return with Uncertainty

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

In investment appraisal, uncertainty can be managed through intervals or fuzzy numbers. The arithmetical properties and the extension principle are well established and can be successfully applied in a rigorous way. The investments ranking is preferably performed when the decision maker dispone of an interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carlsson, C., Fullér, R.: Possibility for decision. STUDFUZZ. Springer (2011)

    Google Scholar 

  2. Chiu, C.Y., Park, C.S.: Fuzzy cash flow analysis using present worth criterion. The Engineering Economist 39(2), 113–138 (1994)

    Article  Google Scholar 

  3. Guerra, M.L., Sorini, L., Stefanini, L.: Fuzzy Investment Decision Making. In: Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L. (eds.) Proceedings of IPMU 2008, pp. 745–750 (2008) ISBN: 978-84-612-3061-7

    Google Scholar 

  4. Kuchta, D.: Fuzzy Capital Budgeting. Fuzzy Sets and Systems 111, 367–385 (2000)

    Article  MATH  Google Scholar 

  5. Kuchta, D.: A fuzzy model for R&D project selection with benefit, outcome and resource interactions. The Engineering Economist 46, 164–180 (2001)

    Article  Google Scholar 

  6. Magni, C.A.: Average internal rate of return and investment decisions: a new perspective. The Engineering Economist 55(2), 150–180 (2010) Updated version available at SSN: http://ssrn.com/abstract=1542690

    Article  Google Scholar 

  7. Markov, S.: Extended interval arithmetic. Compt. Rend. Acad. Bulg. Sci. 30(9), 1239–1242 (1977)

    MATH  Google Scholar 

  8. Pohjola, V.J., Turunen, I.: Estimating the interval rate of return from fuzzy data. Engineering Costs and Production Economics 18, 215–221 (1990)

    Article  Google Scholar 

  9. Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems 161(11), 1564–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stefanini, L., Sorini, L., Guerra, M.L.: Fuzzy Numbers and Fuzzy Arithmetics. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 249–283. John Wiley & Sons (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerra, M.L., Magni, C.A., Stefanini, L. (2012). Average Rate of Return with Uncertainty. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics