Skip to main content

Maximizing Network Topology Lifetime Using Mobile Node Rotation

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7405))

Abstract

One of the key challenges facing wireless sensor networks (WSNs) is extending network lifetime due to sensor nodes having limited power supplies. Extending WSN lifetime is complicated because nodes often experience differential power consumption. For example, nodes closer to the sink in a given routing topology transmit more data and thus consume power more rapidly than nodes farther from the sink. Inspired by the huddling behavior of emperor penguins where the penguins take turns on the cold extremities of a penguin “huddle”, we propose mobile node rotation, a new method for using low-cost mobile sensor nodes to address differential power consumption and extend WSN lifetime. Specifically, we propose to rotate the nodes through the high power consumption locations. We propose efficient algorithms for single and multiple rounds of rotations. Our extensive simulations show that mobile node rotation can extend WSN topology lifetime by more than eight times on average in a which is significantly better than existing alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: SenSys, pp. 214–226 (2004)

    Google Scholar 

  2. Suzuki, M., Saruwatari, S., Kurata, N., Morikawa, H.: A high-density earthquake monitoring system using wireless sensor networks. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, ser. SenSys 2007, pp. 373–374 (2007)

    Google Scholar 

  3. Filipponi, L., Santini, S., Vitaletti, A.: Data Collection in Wireless Sensor Networks for Noise Pollution Monitoring. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 492–497. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Luo, L., Cao, Q., Huang, C., Abdelzaher, T.F., Stankovic, J.A., Ward, M.: Enviromic: Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS, p. 34 (2007)

    Google Scholar 

  5. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing 6(4), 395–410 (2007)

    Article  Google Scholar 

  6. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.S.: Robomote: enabling mobility in sensor networks. In: IPSN, pp. 404–409 (2005)

    Google Scholar 

  7. http://www.k-team.com/robots/khepera/index.html

  8. Kim, J.-H., Kim, D.-H., Kim, Y.-J., Seow, K.-T.: Soccer Robotics. Springer (2004)

    Google Scholar 

  9. Zitterbart, D., Wienecke, B., Butler, J., Fabry, B.: Coordinated movements prevent jamming in an emperor penguin huddle. PLoS one 6(6), e20260 (2011)

    Google Scholar 

  10. Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L., Yu, Y., Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Networked infomechanical systems: a mobile embedded networked sensor platform. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN, pp. 376–381 (April 2005)

    Google Scholar 

  11. Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM, pp. 1735–1746 (2005)

    Google Scholar 

  12. Gu, Y., Bozdag, D., Ekici, E.: Mobile element based differentiated message delivery in wireless sensor networks. In: WoWMoM, pp. 83–92 (2006)

    Google Scholar 

  13. Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)

    Article  Google Scholar 

  14. Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in mobility-assisted wireless sensor networks. In: RTSS 2007: Proceedings of the 28th IEEE International Real-Time Systems Symposium, pp. 311–320 (2007)

    Google Scholar 

  15. Jea, D., Somasundara, A., Srivastava, M.B.: Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for energy efficient data collection in wireless sensor networks. MONET 11(3), 327–339 (2006)

    Google Scholar 

  17. Ooi, C.-C., Schindelhauer, C.: Minimal energy path planning for wireless robots. In: ROBOCOMM, p. 2 (2007)

    Google Scholar 

  18. Goldenberg, D.K., Lin, J., Morse, A.S.: Towards mobility as a network control primitive. In: MobiHoc, pp. 163–174 (2004)

    Google Scholar 

  19. Tang, C., McKinley, P.K.: Energy optimization under informed mobility. IEEE Trans. Parallel Distrib. Syst. 17(9), 947–962 (2006)

    Article  Google Scholar 

  20. El-Moukaddem, F., Torng, E., Xing, G., Kulkarni, S.: Mobile relay configuration in data-intensive wireless sensor networks. In: IEEE MASS, pp. 80–89 (2009)

    Google Scholar 

  21. El-Moukaddem, F., Torng, E., Xing, G.: Maximizing data gathering capacity of wireless sensor networks using mobile relays. In: IEEE MASS, pp. 312–321 (2010)

    Google Scholar 

  22. Burkard, R.E.: Selected topics on assignment problems. Discrete Applied Mathematics, 257–302 (2002)

    Google Scholar 

  23. Sha, M., Xing, G., Zhou, G., Liu, S., Wang, X.: C-mac: Model-driven concurrent medium access control for wireless sensor networks. In: INFOCOM, pp. 1845–1853 (2009)

    Google Scholar 

  24. Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In: International Workshop on Mobile and Wireless Communications Network, pp. 368–372 (2002)

    Google Scholar 

  25. Liu, Y., Luo, Z., Xu, K., Chen, L.: A reliable clustering algorithm base on leach protocol in wireless mobile sensor networks. In: International Conference on Mechanical and Electrical Technology (ICMET), pp. 692–696 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Moukaddem, F., Torng, E., Xing, G. (2012). Maximizing Network Topology Lifetime Using Mobile Node Rotation. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2012. Lecture Notes in Computer Science, vol 7405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31869-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31869-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31868-9

  • Online ISBN: 978-3-642-31869-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics