Skip to main content

A New Intuitionistic Fuzzy Rough Set Approach for Decision Support

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7414))

Included in the following conference series:

  • 1591 Accesses

Abstract

The rough set theory was proved of its effectiveness in dealing with the imprecise and ambiguous information. Dominance-based Rough Set Approach (DRSA), as one of the extensions, is effective and fundamentally important for Multiple Criteria Decision Analysis (MCDA). However, most of existing DRSA models cannot directly examine uncertain information within rough boundary regions, which might miss the significant knowledge for decision support. In this paper, we propose a new believe factor in terms of an intuitionistic fuzzy value as foundation, further to induce a kind of new uncertain rule, called believable rules, for better performance in decision-making. We provide an example to demonstrate the effectiveness of the proposed approach in multicriteria sorting and also a comparison with existing representative DRSA models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blaszczynski, J., Greco, S., Slowinski, R.: Multi-criteria classification: a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181, 1030–1044 (2007)

    Article  MATH  Google Scholar 

  3. Chai, J.Y., Liu, J.N.K.: Class-based rough approximation with dominance principle. In: Proceedings of IEEE International Conference on Granular Computing (GrC), pp. 77–82 (2011)

    Google Scholar 

  4. Chai, J.Y., Liu, J.N.K., Xu, Z.S.: A new rule-based SIR approach to supplier selection under intuitionistic fuzzy environments. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems 20(3) (2012)

    Google Scholar 

  5. Chang, B., Hung, H.F.: A study of using RST to create the supplier selection model and decision-making rules. Expert Systems with Applications 37, 8284–8295 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cyran, K.A.: Quasi Dominance Rough Set Approach in Testing for Traces of Natural Selection at Molecular Level. In: Cyran, K.A., Kozielski, S., Peters, J.F., StaÅ„czyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 163–172. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Greco, S., Matarazzo, B., SÅ‚owiÅ„ski, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Greco, S., Matarazzo, B., Slowinski, R.: Decision rule approach. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–561. Springer, Berlin (2005)

    Google Scholar 

  9. Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning 50, 1199–1214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 15, 1179–1187 (2007)

    Article  Google Scholar 

  12. Xu, Z.S., Cai, X.Q.: Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimization and Decision Making 9(4), 359–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Z.W., Shi, Y., Gao, G.X.: A rough set-based multicriteria criteria linear programming approach for the medical diagnosis and prognosis. Expert Systems with Applications 36(5), 8932–8937 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chai, J., Liu, J.N.K., Li, A. (2012). A New Intuitionistic Fuzzy Rough Set Approach for Decision Support. In: Li, T., et al. Rough Sets and Knowledge Technology. RSKT 2012. Lecture Notes in Computer Science(), vol 7414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31900-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31900-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31899-3

  • Online ISBN: 978-3-642-31900-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics