Abstract
Gastroscopy is one of the most important ways for diagnosing gastric cancer. Computer-aided detection of gastroscopic images is helpful in improving the accuracy of gastric cancer diagnosis. This paper proposes a method for lesion detection of gastroscopic images. Mean-shift segmentation is initially applied to reduce the information interference caused when global image or rectangular block serves as an identification area. A well performed three-dimensional color histogram feature is extracted from YCbCr color space. Mean shift-based Color Wavelet Covariance (MS-CWC) is proposed to reduce the cost of computing. Finally, after comparing Perceptron with AdaBoost, the latter is selected to train the classifier for detecting abnormal regions in gastroscopic images. Experiments show that the proposed method is feasible for lesion detection of gastroscopic images; the false negative rate(FNR), false positive rate(FPR), and error rates(ER) are 15.50%, 16.89%, and 16.35%, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garcia, M., Jemal, A., Ward, E., Center, M., Hao, Y., Siegel, R., Thun, M.: Global cancer facts & figures 2007, vol. 1(3). American Cancer Society, Atlanta (2007)
Long, W., Wu, J.: Progress in early diagnosis of gastric cancer. Chinese Journal of Clinical Oncology and Rehabilitation 13(5), 469–469 (2006)
Cheng, S., Chen, L., Wu, W., Chen, Y., Wu, Y.: The clinical research of early gastric cancer with benigh appearance. Chinese Journal of Gastroenterology and Hepatology 17(003), 197–200 (2008)
Iakovidis, D., Maroulis, D., Karkanis, S.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Computers in Biology and Medicine 36(10), 1084–1103 (2006)
Bashar, M. K., Mori, K., Suenaga, Y., Kitasaka, T., Mekada, Y.: Detecting Informative Frames from Wireless Capsule Endoscopic Video Using Color and Texture Features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 603–610. Springer, Heidelberg (2008)
Li, B., Meng, M.: Texture analysis for ulcer detection in capsule endoscopy images. Image and Vision computing 27(9), 1336–1342 (2009)
Karargyris, A., Bourbakis, N.: A methodology for detecting blood-based abnormalities in wireless capsule endoscopy videos. In: 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE), Athens, pp. 1–6 (2008)
Zheng, M., Krishnan, S., Tjoa, M.: A fusion-based clinical decision support for disease diagnosis from endoscopic images. Computers in Biology and Medicine 35(3), 259–274 (2005)
Oh, J., Hwang, S., Lee, J., Tavanapong, W., Wong, J., de Groen, P.: Informative frame classification for endoscopy video. Medical Image Analysis 11(2), 110–127 (2007)
Li, B., Meng, M.Q.H., Lau, J.Y.W.: Computer-aided small bowel tumor detection for capsule endoscopy. Artificial Intelligence in Medicine 52(1), 11–16 (2011)
Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A., Brokos, A.: A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In: The 18th IEEE Symposium on Computer-Based Medical Systems, Dublin, pp. 575–580 (2005)
Schapire, R.E., Freund, Y.: A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)
Häfner, M., Kwitt, R., Uhl, A., Wrba, F., Gangl, A., Vécsei, A.: Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps. Pattern Recognition 42(6), 1180–1191 (2009)
Peng, B., Zhang, L., Yang, J.: Iterated Graph Cuts for Image Segmentation. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 677–686. Springer, Heidelberg (2010)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal similarity based region merging. Pattern Recognition 43(2), 445–456 (2010)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)
Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 750–755 (1997)
Iakovidis, D., Maroulis, D., Karkanis, S., Flaounas, I.: Color texture recognition in video sequences using wavelet covariance features and support vector machines. In: The 29th Euromicro Conference, pp. 199–204. Citeseer (2003)
Montoya-Zegarra, J.A., Papa, J.P., Leite, N.J., Da Silva Torres, R., Falc̃o, A.X.: Learning how to extract rotation-invariant and scale-invariant features from texture images. Eurasip Journal on Advances in Signal Processing (2008)
Wu, Y., Sun, K., Lin, X., Cheng, S., Zhang, S.: An Mean Shift Based Gray Level Co-occurrence Matrix for Endoscope Image Diagnosis. In: International Conference on Medical Biometrics, pp. 403–412 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sun, K., Wu, Y., Lin, X., Cheng, S., Zhu, YM., Zhang, S. (2012). Mean Shift-Based Lesion Detection of Gastroscopic Images. In: Zhang, Y., Zhou, ZH., Zhang, C., Li, Y. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2011. Lecture Notes in Computer Science, vol 7202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31919-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-31919-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31918-1
Online ISBN: 978-3-642-31919-8
eBook Packages: Computer ScienceComputer Science (R0)