Skip to main content

Illumination Invariant Eye Detection in Facial Images Based on the Retinex Theory

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7202))

Abstract

Eye detection plays an important role in face recognition because eye features provide a high recognition rate. However, illumination effects such as heavy shadows and drastic lighting change make it difficult to detect eyes well in actual faces. In this paper, we provide a new framework for illumination invariant eye detection robust against varying lighting conditions. First, we use an adaptive smoothing based on the Retinex theory to remove the illumination effects. Second, an eye candidate detection using the edge histogram descriptor (EHD) is performed on the illumination normalized images. Third, SVM classification is utilized for eye verification. Finally, eye positions are determined by the eye probability map (EPM). Experimental results on the CMU-PIE, Yale B, and AR face datasets demonstrate that the proposed method achieves high detection accuracy and fast computation results in eye detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kim, H.J., Kim, W.Y.: Eye detection in facial images using zernike moments with SVM. ETRI Journal 30(2), 335–337 (2008)

    Article  MATH  Google Scholar 

  2. Yang, F., Su, J.: Fast illumination normalization for robust eye localization under variable illumination. Journal of Electronic Imaging 18(1), article ID: 010503 (2009)

    Google Scholar 

  3. Park, C.W., Park, K.T., Moon, Y.S.: Eye detection using eye filter and minimization of NMF-based reconstruction error in facial image. Electronics Letters 46(2), 130–132 (2010)

    Article  MathSciNet  Google Scholar 

  4. Land, E.: An alternative technique for the computation of the designator in the Retinex theory of color vision. Proceedings of National Academy of Sciences 83, 3078–3080 (1986)

    Article  Google Scholar 

  5. Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Proceedings of International Conference on Audio and Video Based Biometric Person Authentication, pp. 10–18 (2003)

    Google Scholar 

  6. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround Retinex. IEEE Transactions on Image Processing 6(3), 451–462 (1997)

    Article  Google Scholar 

  7. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale Retinex for bridging the gap between color images and the human Observation of Scenes. IEEE Transactions on Image Processing 6(7), 965–976 (1997)

    Article  Google Scholar 

  8. Wang, H., Li, S.J., Wang, Y.: Generalized quotient image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  9. Wang, H., Li, S.J., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: Proceeding of IEEE International Conference on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  10. Park, Y.K., Park, S.L., Kim, J.K.: Retinex method based on adaptive smoothing for illumination invariant face recognition. Signal Processing 88, 1929–1945 (2008)

    Article  MATH  Google Scholar 

  11. Won, C.S., Park, S.J.: Efficient use of MPEG-7 edge histogram descriptor. ETRI Journal 24(1), 23–30 (2002)

    Article  Google Scholar 

  12. Kapela, R., Sniatała, P., Rybarczyk, A.: Real-time visual content description system based on MPEG-7 descriptors. Multimedia Tools and Applications 53, 119–150 (2011)

    Article  Google Scholar 

  13. Shaked, D., Keshet, R.: Robust recursive envelope operators for fast Retinex. Hewlett-Packard Research Laboratories Technical Report, HPL-2002-74R1 (2002)

    Google Scholar 

  14. Chen, K.: Adaptive smoothing via contextual and local discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1552–1567 (2005)

    Article  Google Scholar 

  15. Vapnik, V.N.: Statistical learning theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jung, C., Jiao, L., Sun, T. (2012). Illumination Invariant Eye Detection in Facial Images Based on the Retinex Theory. In: Zhang, Y., Zhou, ZH., Zhang, C., Li, Y. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2011. Lecture Notes in Computer Science, vol 7202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31919-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31919-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31918-1

  • Online ISBN: 978-3-642-31919-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics