Skip to main content

Using Anisotropic Bivariate Threshold Function for Image Denoising in NSCT Domain

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7202))

  • 3572 Accesses

Abstract

In this paper, a more stable solving method of anisotropic bivariate Laplacian distribution function and corresponding threshold function is derived from the model using Bayesian estimation theory and extended to the non subsampled contourlet(NSCT) domain. A novel Non-Subsampled Contourlet Transform based on anisotropic bivariate threshold function (ABNSCT) for image denoising has been proposed. Such algorithms use anisotropic property of the variances of NSCT coefficients in different scales of natural images and a maximum a posteriori (MAP) relies on the conjecture that the NSCT coefficients and parameters locally vary with local marginal variance estimation. The simulation results indicate that the proposed method can remove Gaussian white noise effectively over a wide range of noise variance, improve the peak signal-to-noise ratio of the image, and keep better visual result in edges information reservation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Po, D.D., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Transactions on Image Processing 15(6), 1610–1620 (2006)

    Article  MathSciNet  Google Scholar 

  2. Candès, E.J., Donoho, D.L.: Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges. In: Schumaker, L.L., et al. (eds.) Curves and Surfaces. Vanderbilt University Press, Nashville (1999)

    Google Scholar 

  3. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. on Image Processing 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cunha, A.L., Zhou, J., Do, M.N.: The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. IEEE Trans. Image Processing 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  5. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Proc. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans. Medical Imaging 22(3), 323–331 (2003)

    Article  Google Scholar 

  7. Sendur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. 9(12), 438–441 (2002)

    Article  Google Scholar 

  8. Yin, S., Cao, L., Ling, Y., et al.: A Image denoising with anisotropic bivariate shrinkage. Signal Processing 91, 2078–2090 (2011)

    Article  MATH  Google Scholar 

  9. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  10. Quarticfunction, http://en.wikipedia.org/wiki/Quartic_function

  11. Borwein, P., Erdelyi, T.: Polynomials and Polynomial Inequalities, p. 4. Springer, New York (1995)

    Book  MATH  Google Scholar 

  12. Fan, S.: A new extracting formula and a new distinguishing means on the one variable cubic equation. Natural Science Journal of Hainan Teacheres College 2(2), 91–98 (1989)

    Google Scholar 

  13. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Processing 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, J., Chen, L. (2012). Using Anisotropic Bivariate Threshold Function for Image Denoising in NSCT Domain. In: Zhang, Y., Zhou, ZH., Zhang, C., Li, Y. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2011. Lecture Notes in Computer Science, vol 7202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31919-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31919-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31918-1

  • Online ISBN: 978-3-642-31919-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics