Skip to main content

RNA Folding Algorithms with G-Quadruplexes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7409))

Abstract

G-quadruplexes are abundant locally stable structural elements in nucleic acids. The combinatorial theory of RNA structures and the dynamic programming algorithms for RNA secondary structure prediction are extended here to incorporate G-quadruplexes using a simple but plausible energy model. With preliminary energy parameters we find that the overwhelming majority of putative quadruplex-forming sequences in the human genome are likely to fold into canonical secondary structures instead.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, A., Suess, B.: An RNA G-quadruplex in the 3’ UTR of the proto-oncogene PIM1 represses translation. RNA Biology 8, 802–805 (2011)

    Article  Google Scholar 

  2. Baral, A., Kumar, P., Halder, R., Mani, P., Yadav, V.K., Singh, A., Das, S.K., Chowdhury, S.: Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals. Nucleic Acids Res. (2012)

    Google Scholar 

  3. Beaudoin, J.D., Perreault, J.P.: 5’-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 38, 7022–7036 (2010)

    Article  Google Scholar 

  4. Bensaid, M., Melko, M., Bechara, E.G., Davidovic, L., Berretta, A., Catania, M.V., Gecz, J., Lalli, E., Bardoni, B.: FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res. 37, 1269–1279 (2009)

    Article  Google Scholar 

  5. Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., Stadler, P.F.: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9, 474 (2008)

    Article  Google Scholar 

  6. Bruccoleri, R.E., Heinrich, G.: An improved algorithm for nucleic acid secondary structure display. Computer Appl. Biosci. 4, 167–173 (1988)

    Google Scholar 

  7. Bugaut, A., Balasubramanian, S.: A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689–697 (2008)

    Article  Google Scholar 

  8. Bugaut, A., Balasubramanian, S.: 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. (2012), doi: 10.1093/nar/gks068

    Google Scholar 

  9. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

    Google Scholar 

  10. Eddy, J., Maizels, N.: Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006)

    Article  Google Scholar 

  11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  12. Gomez, D., Guédin, A., Mergny, J.L., Salles, B., Riou, J.F., Teulade-Fichou, M.P., Calsou, P.: A G-quadruplex structure within the 5’-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res. 38, 7187–7198 (2010)

    Article  Google Scholar 

  13. Gros, J., Guédin, A., Mergny, J.L., Lacroix, L.: G-Quadruplex formation interferes with P1 helix formation in the RNA component of telomerase hTERC. ChemBioChem 9, 2075–2079 (2008)

    Article  Google Scholar 

  14. Guédin, A., De Cian, A., Gros, J., Lacroix, L., Mergny, J.L.: Sequence effects in single-base loops for quadruplexes. Biochimie 90, 686–696 (2008)

    Article  Google Scholar 

  15. Guédin, A., Gros, J., Patrizia, A., Mergny, J.L.: How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858–7868 (2010)

    Article  Google Scholar 

  16. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002)

    Article  Google Scholar 

  17. Hofacker, I.L., Priwitzer, B., Stadler, P.F.: Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20, 191–198 (2004)

    Article  Google Scholar 

  18. Huppert, J.L., Balasubramanian, S.: Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005)

    Article  Google Scholar 

  19. Huppert, J.L., Bugaut, A., Kumari, S., Balasubramanian, S.: G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008)

    Article  Google Scholar 

  20. Ito, K., Go, S., Komiyama, M., Xu, Y.: Inhibition of translation by small RNA-stabilized mRNA structures in human cells. J. Am. Chem. Soc. 133, 19153–19159 (2011)

    Article  Google Scholar 

  21. Jayaraj, G.G., Pandey, S., Scaria, V., Maiti, S.: Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biolog. 9, 81–86 (2012)

    Google Scholar 

  22. Joachimi, A., Benz, A., Hartig, J.S.: A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem. 17, 6811–6815 (2009)

    Article  Google Scholar 

  23. Johnson, J.E., Smith, J.S., Kozak, M.L., Johnson, F.B.: In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie 90, 1250–1263 (2008)

    Article  Google Scholar 

  24. Kikin, O., D’Antonio, L., Bagga, P.S.: QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676–W682 (2006)

    Google Scholar 

  25. Kumari, S., Bugaut, A., Huppert, J.L., Balasubramanian, S.: An RNA G-quadruplex in the 5’UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3, 218–221 (2007)

    Article  Google Scholar 

  26. Lauhon, C.T., Szostak, J.W.: RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117, 1246–1257 (1995)

    Article  Google Scholar 

  27. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Alg. Mol. Biol. 6, 26 (2011)

    Article  Google Scholar 

  28. Luke, B., Lingner, J.: TERRA: telomeric repeat-containing RNA. EMBO J. 28, 2503–2510 (2009)

    Article  Google Scholar 

  29. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004)

    Article  Google Scholar 

  30. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  31. Menon, L., Mihailescu, M.R.: Interactions of the G quartet forming semaphorin 3F RNA with the RGG box domain of the fragile X protein family. Nucleic Acids Res. 35, 5379–5392 (2007)

    Article  Google Scholar 

  32. Mergny, J.L., Lacroix, L.: UV melting of G-quadruplexes. Curr. Protoc. Nucleic Acid Chem. Unit 17.1 (2009)

    Google Scholar 

  33. Morris, M.J., Basu, S.: An unusually stable G-quadruplex within the 5’-UTR of the MT3 matrix metalloproteinase mRNA represses translation in eukaryotic cells. Biochemistry 48, 5313–5319 (2009)

    Article  Google Scholar 

  34. Mückstein, U., Tafer, H., Hackermüller, J., Bernhard, S.B., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)

    Article  Google Scholar 

  35. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D., Lipps, H.J.: Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol. 12, 847–854 (2005)

    Article  Google Scholar 

  36. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy. Soc. Lond. B 255, 279–284 (1994)

    Article  Google Scholar 

  37. Webba da Silva, M.: Geometric formalism for DNA quadruplex folding. Chemistry 13, 9738–9745 (2007)

    Article  Google Scholar 

  38. Stegle, O., Payet, L., Mergny, J.L., MacKay, D.J.C., Huppert, J.L.: Predicting and understanding the stability of G-quadruplexes. Bioinformatics 25, i374–i382 (2009)

    Google Scholar 

  39. Todd, A.K.: Bioinformatics approaches to quadruplex sequence location. Methods 43, 246–251 (2007)

    Article  Google Scholar 

  40. Verma, A., Halder, K., Halder, R., Yadav, V.K., Rawal, P., Thakur, R.K., Mohd, F., Sharma, A., Chowdhury, S.: G-quadruplex DNA motifs as conserved cis-regulatory elements. J. Med. Chem. 51, 5641–5649 (2008)

    Article  Google Scholar 

  41. Wieland, M., Hartig, J.S.: RNA quadruplex-based modulation of gene expression. Chem. Biol. 14, 757–763 (2007)

    Article  Google Scholar 

  42. Wong, H.M., Payet, L., Huppert, J.L.: Function and targeting of G-quadruplexes. Curr. Opin. Mol. Ther. 11, 146–155 (2009)

    Google Scholar 

  43. Zhang, A.Y., Bugaut, A., Balasubramanian, S.: A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry 50, 7251–7258 (2011)

    Article  Google Scholar 

  44. Zhang, D.H., Fujimoto, T., Saxena, S., Yu, H.Q., Miyoshi, D., Sugimoto, N.: Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 49, 4554–4563 (2010)

    Article  Google Scholar 

  45. Zhang, D.H., Zhi, G.Y.: Structure monomorphism of RNA G-quadruplex that is independent of surrounding condition. J. Biotechnol. 150, 6–10 (2010)

    Article  Google Scholar 

  46. Zhao, Y., Du, Z., Li, N.: Extensive selection for the enrichment of G4 DNA motifs in transcriptional regulatory regions of warm blooded animals. FEBS Letters 581, 1951–1956 (2007)

    Article  Google Scholar 

  47. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenz, R. et al. (2012). RNA Folding Algorithms with G-Quadruplexes. In: de Souto, M.C., Kann, M.G. (eds) Advances in Bioinformatics and Computational Biology. BSB 2012. Lecture Notes in Computer Science(), vol 7409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31927-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31927-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31926-6

  • Online ISBN: 978-3-642-31927-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics