Skip to main content

Integrating Relational Reinforcement Learning with Reasoning about Actions and Change

  • Conference paper
Inductive Logic Programming (ILP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7207))

Included in the following conference series:

Abstract

This paper presents an approach to the integration of Relational Reinforcement Learning with Answer Set Programming and the Event Calculus. Our framework allows for background and prior knowledge formulated in a semantically expressive formal language and facilitates the computationally efficient constraining of the learning process by means of soft as well as compulsive (sub-)policies and (sub-)plans generated by an ASP-solver. As part of this, a new planning-based approach to Relational Instance-Based Learning is proposed. An empirical evaluation of our approach shows a significant improvement of learning efficiency and learning results in various benchmark settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dzeroski, S., De Raedt, L., Blockeel, H.: Relational reinforcement learning. In: Procs. ICML 1998. Morgan Kaufmann (1998)

    Google Scholar 

  2. Kowalski, R., Sergot, M.: A Logic-Based Calculus of Events. New Generation Computing 4, 67–95 (1986)

    Article  Google Scholar 

  3. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point sets. Acta Informatica 37, 765–780 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Driessens, K.: Relational Reinforcement Learning. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven (2004)

    Google Scholar 

  5. Croonenborghs, T., Ramon, J., Bruynooghe, M.: Towards informed reinforcement learning. In: Procs. of the Workshop on Relational Reinforcement Learning at ICML 2004 (2004)

    Google Scholar 

  6. Kersting, K., De Raedt, L.: Logical Markov decision programs. In: Procs. IJCAI 2003 Workshop on Learning Statistical Models of Relational Data (2003)

    Google Scholar 

  7. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for First-order MDP’s. In: Procs. IJCAI 2001. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  8. Letia, I.A., Precup, D.: Developing collaborative Golog agents by reinforcement learning. In: Procs. ICTAI 2001. IEEE Computer Society (2001)

    Google Scholar 

  9. Bryce, D.: POND: The Partially-Observable and Non-Deterministic Planner. Notes of the 5th International Planning Competition at ICAPS 2006 (2006)

    Google Scholar 

  10. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferraris, P., Giunchiglia, F.: Planning as satisfiability in nonde-terministic domains. In: Proc. of AAAI 2000 (2000)

    Google Scholar 

  12. Shanahan, M., Witkowski, M.: Event Calculus Planning Through Satisfiability. Journal of Logic and Computation 14(5), 731–745 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 105–124 (2011)

    MathSciNet  Google Scholar 

  14. Van Otterlo, M.: A Survey of RL in Relational Domains, CTIT Technical Report Series (2005)

    Google Scholar 

  15. Rodrigues, C., Gerard, P., Rouveirol, C.: Relational TD Reinforcement Learning. In: Procs. EWRL 2008 (2008)

    Google Scholar 

  16. Rummery, G.A., Niranjan, M.: Online Q-learning using connectionist systems. Technical Report, Cambridge University Engineering Department (1994)

    Google Scholar 

  17. Ryan, M.R.K.: Hierarchical Reinforcement Learning: A Hybrid Approach. PhD thesis, University of New South Wales, New South Wales, Australia (2002)

    Google Scholar 

  18. Kim, T.-W., Lee, J., Palla, R.: Circumscriptive event calculus as answer set programming. In: Procs. IJCAI 2009 (2009)

    Google Scholar 

  19. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Moyle, S., Muggleton, S.: Learning Programs in the Event Calculus. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 205–212. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  21. Goudey, B.: A Comparison of Situation Calculus and Event Calculus. Physical Review (2007)

    Google Scholar 

  22. Shanahan, M.: A Circumscriptive Calculus of Events. Artificial Intelligence 1995, 249–284 (1995)

    Article  MathSciNet  Google Scholar 

  23. Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation: Preliminary Report. In: Procs. of AAAI 1998 (1998)

    Google Scholar 

  24. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Procs. of the Fifth International Conference on Logic Programming (ICLP) (1988)

    Google Scholar 

  25. Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. In: Lifshitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honour of John McCarthy. Academic Press Professional, San Diego (1991)

    Google Scholar 

  26. Mueller, E.T.: Event calculus reasoning through satisfiability. Journal of Logic and Computation 14(5), 703–730 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Finzi, A., Lukasiewicz, T.: Adaptive Multi-agent Programming in GTGolog. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 389–403. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Beck, D., Lakemeyer, G.: Reinforcement Learning for Golog Programs. In: Procs. Workshop on Relational Approaches to Knowledge Representation and Learning (2009)

    Google Scholar 

  29. Fern, A., Yoon, S., Givan, R.: Reinforcement Learning in Relational Domains: A Policy-Language Approach. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press (2007)

    Google Scholar 

  30. Martin, M., Geffner, H.: Learning Generalized Policies from Planning Examples Using Concept Languages. Applied Intelligence 20(1), 9–19 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nickles, M. (2012). Integrating Relational Reinforcement Learning with Reasoning about Actions and Change. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31951-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31950-1

  • Online ISBN: 978-3-642-31951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics