Abstract
In this paper, we compare and analyze the novelty of a scientific paper (text document) of a specific domain. Our experiments utilize the standard Latent Dirichlet Allocation (LDA) topic modeling algorithm to filter the redundant documents and the Ontology of a specific domain which serves as the knowledge base for that domain, to generate cognitive maps for the documents. We report results based on the distance measure such as the Euclidean distance measure that analyses the divergence of the concepts between the documents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence level, pp. 314–321. ACM (2003), http://doi.acm.org/10.1145/860435.860493
Croft, X.L.W.: Answer updating approach to novelty detection. ACM (2004), http://dx.doi.org/10.3115/1220575.1220665
Fernandez, R.T.: The effect of smoothing in language models for novelty detection. In: Future Directions in Information Access, FDIA 2007 (2007), http://www-gsi.dec.usc.es/_dlosada/fdia07.pdf
Gamon, M.: Graph-based text representation for novelty detection, pp. 17–24. ACM (2006), http://dl.acm.org/citation.cfm?id=1654758.1654762
Kok Wah Ng, L.C., Tsai, F.S., Goh, K.C.: Novelty detection for text documents using named entity recognition. IEEE (2007)
Schiffman, B., McKeown, K.R.: Context and learning in novelty detection, pp. 716–723. ACM (2005), http://dx.doi.org/10.3115/1220575.1220665
Stokes, N., Carthy, J.: First story detection using a composite document representation, pp. 1–8. ACM (2001), http://dx.doi.org/10.3115/1072133.1072182
Tsai, F.S., Zhang, Y.: D2S: Document-to-sentence framework for novelty detection, vol. 29(2), pp. 419–433. ACM (November 2011), http://dx.doi.org/10.1007/s10115-010-0372-2
Tsai, M.-F., Feng Tsai, M., Hsi Chen, H.: Some similarity computation methods in novelty detection. NIST (2002)
Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection, pp. 688–693. ACM (2002), http://doi.acm.org/10.1145/775047.775150
Zhang, J., Ghahramani, Z.: A probabilistic model for online document clustering with application to novelty detection. In: Neural Information Processing Systems (NIPS), vol. 17 (2004)
Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering, pp. 81–88. ACM (2002), http://doi.acm.org/10.1145/564376.564393
Zhao, L., Zhang, M., Ma, S.: The nature of novelty detection, vol. 9(5), pp. 521–541. ACM (November 2006), http://dx.doi.org/10.1007/s10791-006-9000-x
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sendhilkumar, S., Mahalakshmi, G.S., Harish, S., Karthik, R., Jagadish, M., Dilip Sam, S. (2013). Assessing Novelty of Research Articles Using Fuzzy Cognitive Maps. In: Abraham, A., Thampi, S. (eds) Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32063-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-32063-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32062-0
Online ISBN: 978-3-642-32063-7
eBook Packages: EngineeringEngineering (R0)