Abstract
In this paper, we consider different ways of handling missing values in ordinal classification problems with monotonicity constraints within Dominance-based Rough Set Approach (DRSA). We show how to induce classification rules in a way that has desirable properties. Our considerations are extended to an experimental comparison of the postulated rule classifier with other ordinal and non-ordinal classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-David, A.: Monotonicity maintenance in information-theoretic machine learning algorithms. Machine Learning 19(1), 29–43 (1995)
Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic rules. Engineering Applications of Artif. Intelligence 25, 284–294 (2012)
Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification – a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181(3), 1030–1044 (2007)
Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic variable consistency rough set approaches. Int. J. of Approx. Reasoning 50(7), 979–999 (2009)
Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences 181, 987–1002 (2011)
Daniels, H., Kamp, B.: Applications of mlp networks to bond rating and house pricing. Neural Computation and Applications 8, 226–234 (1999)
Dembczyński, K., Greco, S., Słowiński, R.: Rough set approach to multiple criteria classification with imprecise evaluations and assignments. European Journal of Operational Research 198(2), 626–636 (2009)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Greco, S., Matarazzo, B., Słowiński, R.: Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)
Greco, S., Matarazzo, B., Słowiński, R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zanakis, S., et al. (eds.) Decision Making: Recent Developments and Worldwide Applications, pp. 295–316. Kluwer, Dordrecht (2000)
Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)
Greco, S., Matarazzo, B., Słowiński, R.: Granular computing for reasoning about ordered data: the dominance-based rough set approach. In: Pedrycz, W., et al. (eds.) Handbook of Granular Computing, ch.15, Wiley, Chichester (2008)
Grzymała-Busse, J.W., Hu, M.: A Comparison of Several Approaches to Missing Attribute Values in Data Mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)
Grzymała-Busse, J.W.: Mining Incomplete Data—A Rough Set Approach. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 1–7. Springer, Heidelberg (2011)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2009)
Koop, G.: Analysis of Economic Data. Wiley, Chichester (2000)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about. Data. Kluwer Academic Publishers, Dordrecht (1991)
Słowiński, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7786. Springer, New York (2009)
Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17, 545–566 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Błaszczyński, J., Słowiński, R., Szeląg, M. (2012). Induction of Ordinal Classification Rules from Incomplete Data. In: Yao, J., et al. Rough Sets and Current Trends in Computing. RSCTC 2012. Lecture Notes in Computer Science(), vol 7413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32115-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-32115-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32114-6
Online ISBN: 978-3-642-32115-3
eBook Packages: Computer ScienceComputer Science (R0)